FLEXIBLE FORMULA OF ARITHEMTIC

Rasmus Blanck

University of Gothenburg

There are several result on flexible formulae in the literature: formulae such that their extensions as sets are left undetermined by the arithmetical theory in question. In a sense, these formulae can mimic any other formula of a certain complexity. For example, there is a Σ_1 -formula $\phi(x)$ such that $\mathbb{N} \models \forall x \neg \phi(x)$, and for each Σ_1 -formula $\sigma(x)$, there is an end-extension \mathcal{N} of \mathbb{N} such that $\mathcal{N} \models \forall x (\phi(x) \leftrightarrow \sigma(x))$.

Recently (2011), Hugh Woodin has published a novel generalisation of these results: There is a Σ_1 -formula $\psi(x)$ such that for each countable model \mathcal{M} of PA, and for each formula $\delta(x)$ defining a finite extension of $\psi^{\mathcal{M}}$, there is an end-extension $\mathcal{N} \models \text{PA}$ of \mathcal{M} such that $\mathcal{N} \models \forall x(\psi(x) \leftrightarrow \delta(x))$.

In this talk I will present another variation on this theme. Let T be some consistent, r.e. extension of $I\Sigma_1$. There is a Σ_n -formula $\gamma(x)$ such that for each model \mathcal{M} of $T + \operatorname{Con}(T)$, and for each Σ_n -formula $\delta(x)$, there is an end-extension $\mathcal{N} \models T$ of \mathcal{M} such that $\mathcal{N} \models \forall x(\gamma(x) \leftrightarrow \delta(x))$.