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Theorem (Kripke, 1962)

If T is an r.e., consistent extension of Q, then there is a Σn-formula
γ(x) that is flexible for Σn in the following sense: For each
Σn-formula δ(x), the theory T + ∀x(γ(x) ↔ δ(x)) is consistent.

Theorem (Model-theoretic version)

If T is an r.e., consistent extension of Q, then there is a
Σn-formula such that N |= ∀x¬γ(x), and for each Σn-formula
δ(x), there is a model M |= T such that M |= ∀x(γ(x) ↔ δ(x)).
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Theorem (Woodin, 2011)

There is a Σ1-formula ψ(x) such that

1 N |= ∀x¬ψ(x),

2 for each countable model M of PA, and for each δ(x) such
that M |= ∀x(ψ(x) → δ(x)), and the M-extension of δ(x) is
M-finite, there is an end-extension N |= PA of M such that
N |= ∀x(ψ(x) ↔ δ(x)).
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Theorem (Enayat-Shavrukov, 2012, unpublished)

There is a Σ1-formula ψ(x) such that

1 N |= ∀x¬ψ(x),

2 for each (((((countable model M of PA, and for each δ(x) such
that M |= ∀x(ψ(x) → δ(x)), and the M-extension of δ(x) is
M-finite, there is an end-extension N |= PA of M such that
N |= ∀x(ψ(x) ↔ δ(x)).
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T is an r.e., consistent extension of IΣ1.

SatΣn is a satisfaction predicate for (binary) Σn-formulae,
such that T ` SatΣn(pφq, x , y) ↔ φ(x , y).

Sel{φ} is a formula minimising the witness for φ, so that
T ` ∃zφ(z) → ∃!z Sel{φ}(z).

The ith (unary) partial recursive function fi is the function
with graph defined by SatΣ1(i , x , y).

R(x , y , z) is the formula Sel{SatΣ1}(x , y , z), which strongly
represents a universal machine.
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Lemma (Kripke, 1962)

There is an index e such that for each k , the theory T + R(e, e, k)
is consistent.

Proof.

Let e be the index of the function f defined by

f (n) = k iff T ` ¬R(n, n, k).

Suppose T ` ¬R(e, e, k). Then f (e) = k , so T ` R(e, e, k),
contradicting the consistency of T . Hence T + R(e, e, k) is
consistent.

Let γ(x) := ∃z(R(e, e, z) ∧ SatΣn(z , x)), and let δ(x) be any
Σn-formula. T + R(e, e, pδq) is consistent, so
T + ∀x(γ(x) ↔ δ(x)) is consistent.
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Theorem

There is a Σn-formula γ(x) such that for each model M of
T + Con(T ),

1 M |= ∀x¬γ(x),

2 for each Σn-formula δ(x), there is an end-extension N |= T of
M such that N |= ∀x(γ(x) ↔ δ(x)).
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Lemma

There is an index e such that

1 T ` ∀y(Con(T ) → ¬R(e, e, y)),

2 T ` ∀y(Con(T ) → Con(T + R(e, e, y)).

Let γ(x) := ∃z(R(e, e, z) ∧ SatΣn(z , x)).

By (1), if M |= Con(T ), then M |= ∀x¬γ(x).

By (2), if M |= Con(T ), then M |= Con(T + R(e, e, pδq)).

By the Low Arithmetised Completeness Theorem, there is an
end-extension N |= T of M such that N |= R(e, e, pδq).

Hence N |= ∀x(γ(x) ↔ δ(x)).
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