Flexible formulae of arithmetic

Rasmus Blanck

Philosophy, Linguistics and Theory of Science Gothenburg University

> June 18, 2014 JAF33

Theorem (Kripke, 1962)

If T is an r.e., consistent extension of Q, then there is a Σ_n -formula $\gamma(x)$ that is flexible for Σ_n in the following sense: For each Σ_n -formula $\delta(x)$, the theory $T + \forall x(\gamma(x) \leftrightarrow \delta(x))$ is consistent.

Theorem (Model-theoretic version)

If T is an r.e., consistent extension of Q, then there is a Σ_n -formula such that $\mathbb{N} \models \forall x \neg \gamma(x)$, and for each Σ_n -formula $\delta(x)$, there is a model $\mathcal{M} \models T$ such that $\mathcal{M} \models \forall x(\gamma(x) \leftrightarrow \delta(x))$.

Theorem (Woodin, 2011)

There is a Σ_1 -formula $\psi(x)$ such that

- for each countable model M of PA, and for each δ(x) such that M ⊨ ∀x(ψ(x) → δ(x)), and the M-extension of δ(x) is M-finite, there is an end-extension N ⊨ PA of M such that N ⊨ ∀x(ψ(x) ↔ δ(x)).

Theorem (Enayat-Shavrukov, 2012, unpublished)

- There is a Σ_1 -formula $\psi(x)$ such that

 - for each <u>countable</u> model \mathcal{M} of PA, and for each $\delta(x)$ such that $\mathcal{M} \models \forall x(\psi(x) \rightarrow \delta(x))$, and the \mathcal{M} -extension of $\delta(x)$ is \mathcal{M} -finite, there is an end-extension $\mathcal{N} \models \mathsf{PA}$ of \mathcal{M} such that $\mathcal{N} \models \forall x(\psi(x) \leftrightarrow \delta(x))$.

- T is an r.e., consistent extension of IΣ₁.
- Sat_{Σn} is a satisfaction predicate for (binary) Σ_n-formulae, such that T ⊢ Sat_{Σn}([¬]φ[¬], x, y) ↔ φ(x, y).
- Sel{ ϕ } is a formula minimising the witness for ϕ , so that $T \vdash \exists z \phi(z) \rightarrow \exists ! z \operatorname{Sel} \{\phi\}(z).$
- The *i*th (unary) partial recursive function f_i is the function with graph defined by Sat_{Σ1}(i, x, y).
- R(x, y, z) is the formula $Sel{Sat}_{\Sigma_1}(x, y, z)$, which strongly represents a universal machine.

Lemma (Kripke, 1962)

There is an index e such that for each k, the theory T + R(e, e, k) is consistent.

Proof.

Let e be the index of the function f defined by

$$f(n) = k \text{ iff } T \vdash \neg R(n, n, k).$$

Suppose $T \vdash \neg R(e, e, k)$. Then f(e) = k, so $T \vdash R(e, e, k)$, contradicting the consistency of T. Hence T + R(e, e, k) is consistent.

Let $\gamma(x) := \exists z(R(e, e, z) \land \operatorname{Sat}_{\Sigma_n}(z, x))$, and let $\delta(x)$ be any Σ_n -formula. $T + R(e, e, \lceil \delta \rceil)$ is consistent, so $T + \forall x(\gamma(x) \leftrightarrow \delta(x))$ is consistent.

Theorem

There is a Σ_n -formula $\gamma(x)$ such that for each model \mathcal{M} of $T + \operatorname{Con}(T)$,

- If or each Σ_n-formula δ(x), there is an end-extension N ⊨ T of M such that N ⊨ ∀x(γ(x) ↔ δ(x)).

Lemma

There is an index e such that

$$T \vdash \forall y (\operatorname{Con}(T) \to \neg R(e, e, y)),$$

 $T \vdash \forall y (\operatorname{Con}(T) \to \operatorname{Con}(T + R(e, e, y)).$

Let $\gamma(x) := \exists z (R(e, e, z) \land \operatorname{Sat}_{\Sigma_n}(z, x)).$

- By (1), if $\mathcal{M} \models \operatorname{Con}(\mathcal{T})$, then $\mathcal{M} \models \forall x \neg \gamma(x)$.
- By (2), if $\mathcal{M} \models \operatorname{Con}(T)$, then $\mathcal{M} \models \operatorname{Con}(T + R(e, e, \lceil \delta \rceil))$.
- By the Low Arithmetised Completeness Theorem, there is an end-extension N ⊨ T of M such that N ⊨ R(e, e, ¬δ¬).

• Hence
$$\mathcal{N} \models \forall x(\gamma(x) \leftrightarrow \delta(x)).$$

- Blanck, R. *Two consequences of Kripke's lemma*, unpublished manuscript.
- Enayat, A. On a theorem of Woodin, private communication.
- Kripke, S. (1962) "Flexible" predicates of formal number theory in Proceedings of the AMS, Vol. 13, No. 4, pp. 647–650.
- Shavrukov, V. Yu. *On risks of accruing assets against increasingly better advice*, private communication.
- Woodin, H. (2011) A potential subtlety concerning the distinction between determinism and nondeterminism in Infinity, New Research Frontiers, eds. Heller & Woodin.