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• A new result about SL(2,Z)

• Conclusion and further work



What is ∆0−definability?

x is not prime nor 0 nor 1

(∃u)u<x (∃v)v<x (x = uv)



What is ∆0−definability?

x is not prime nor 0 nor 1

(∃u)u<x (∃v)v<x (x = uv)

∆0−definability is essentially definability with a formula in the lan-
gage of arithmetic where the quantified variables are bounded by
terms



What is ∆0−definability?

Major open problem

Find a ”simple” artithmetical relation

NOT ∆0−definable

Here ”simple” is a non defined meta-mathematical notion!
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What is ∆0−definability?

Open exemple

The relation y is a prime number of even index

IS NOT KNOWN TO BE ∆0−definable



Why counting modulo (finite) monöıds?

The relation y is a prime number of even index

is defined by (y is prime) ∧ (f (y) = 0) where

f is recursively defined by
f (0) = 0

f (i + 1) = f (i) + 1 mod 2 if i is prime
f (i + 1) = f (i) if i is not prime



Why counting modulo (finite) monöıds?

The relation y is a prime number of even index

is defined by

(y is prime) ∧ (g(0) +2 g(1) +2 ...+2 g(y) = 0)

where

{
g(i) = 1 ∈ Z/2Z if i is prime
g(i) = 0 ∈ Z/2Z if i is not prime

+2 is the sum modulo 2.



Why counting modulo (finite) monöıds?

∆]G
0 is defined by adding to the definition of ∆0

the following closure under counting modulo G

where G is a finite monöıd:
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Suppose that

{
N → G
i → g(i)

is s.t.

for all g ∈ G , the relation g(i) = g is ∆]G
0 −definable



Why counting modulo (finite) monöıds?

Suppose that

{
N → G
i → g(i)

is s.t.

for all g ∈ G , the relation g(i) = g is ∆]G
0 −definable

THEN

for all g ∈ G , the relation g(0) +G g(1) +G ...+G g(y) = g

is ∆]G
0 −definable
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Strong counting modulo N

Suppose that

{
N → N
i → g(i)

is s.t.

the relation z = g(i) is ∆]N
0 −definable



Counting modulo N

Strong counting modulo N

Suppose that

{
N → N
i → g(i)

is s.t.

the relation z = g(i) is ∆]N
0 −definable

THEN

the relation g(0) + g(1) + ...+ g(y) = z

is ∆]N
0 −definable
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Counting modulo N

Weak counting modulo N

Suppose that

{
N → {0; 1}
i → g(i)

is s.t.

the relation 1 = g(i) is ∆]N
0 −definable



Counting modulo N

Weak counting modulo N

Suppose that

{
N → {0; 1}
i → g(i)

is s.t.

the relation 1 = g(i) is ∆]N
0 −definable

THEN

the relation g(0) + g(1) + ...+ g(y) = z

is ∆]N
0 −definable
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Counting

Known facts

JAF’s folklaw:

Previous definitions of counting modulo N are equivalent



Counting

Known facts

JAF’s folklaw+ Theorem (Clote 95)

∆
]Z/2Z
0 ⊆ ∆]Z

0 ⊆ ∆
]σ5
0

σ5 is the permutation group over five elements.

∆
]Z/2Z
0

⊆ ∆
]Z/6Z
0

∆
]Z/3Z
0



A result about SL(2,N)

Theorem

Let


N → SL(2,N)

i →
(

a(i) b(i)
c(i) d(i)

)

where

(
u v
w z

)
=

(
a(i) b(i)
c(i) d(i)

)
is ∆0−definable



A result about SL(2,N)

Theorem

Then(
u v
w z

)
=

(
a(0) b(0)
c(0) d(0)

)(
a(1) b(1)
c(1) d(1)

)
...

(
a(y) b(y)
c(y) d(y)

)
is ∆]N

0 −definable
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A result about SL(2,N)

Idea of proof

Lemma 1

Let M =

(
a b
c d

)
∈ SL(2,N)

There exist k(a, b, c , d) and α(i , a, b, c , d) s.t.

M =

(
1 α(0, a, b, c , d)
0 1

)(
1 0

α(1, a, ...) 1

)
...

(
1 α(2k(a, ...), a, ...)
0 1

)
and α(0) ≥ 0, α(1) ≥ 1, ... α(2k − 1) ≥ 1, α(2k) ≥ 0,

and α and k have ∆0−definable graph.



A result about SL(2,N)

Idea of proof

Lemma 2

Let

(
a b
c d

)
∈ SL(2,N) , and α a function with a ∆0−definable graph

and α(0) ≥ 0, α(1) ≥ 1, ... α(2k − 1) ≥ 1, α(2k) ≥ 0,

Then

(
a b
c d

)
=

(
1 α(0)
0 1

)(
1 0

α(1) 1

)
...

(
1 α(2k)
0 1

)
is ∆0−definable



A result about SL(2,N)

Idea of proof

Lemma 2bis

Let

(
a b
c d

)
∈ SL(2,N) , and α a function with a ∆0−definable graph

and α(0) ≥ 0, α(1) ≥ 0, ... α(2k − 1) ≥ 0, α(2k) ≥ 0,

Then

(
a b
c d

)
=

(
1 α(0)
0 1

)(
1 0

α(1) 1

)
...

(
1 α(2k)
0 1

)
is ∆]N

0 −definable
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What could be counting modulo infinite matrix monöıds?



What could be counting modulo infinite monöıds?

What could be counting modulo infinite matrix monöıds?

Let M(i) = (au,v (i))1≤u,v≤d ∈ G

Suppose (zu,v )1≤u,v≤d = (au,v (i))1≤u,v≤d is ∆]G
0 −definable



What could be counting modulo infinite monöıds?

What could be counting modulo infinite matrix monöıds?

Let M(i) = (au,v (i))1≤u,v≤d ∈ G

Suppose (zu,v )1≤u,v≤d = (au,v (i))1≤u,v≤d is ∆]G
0 −definable

THEN

(zu,v )1≤u,v≤d = M(0)M(1)...M(y) is ∆]G
0 −definable



What could be counting modulo infinite monöıds?

What could be counting modulo infinite finitely generated
monöıds?

Let G be a monöıd with a finite set of generators Γ = {γ1, ..., γd}



What could be counting modulo infinite monöıds?

What could be counting modulo infinite finitely generated
monöıds?

Let G be a monöıd with a finite set of generators Γ = {γ1, ..., γd}

For all

{
N → Γ
i → g(i)

s.t.

for all γ ∈ Γ, the relation g(i) = γ is ∆]G
0 −definable

THEN
for all γ ∈ Γ, the relation g(0).g(1)....g(z) = γ is ∆]G

0 −definable



What could be counting modulo infinite monöıds?

What could be counting modulo infinite finitely generated
monöıds of matrices?

The first definition is stronger than the second



A result about SL(2,Z)

Definition

What is ∆0−definability in Z?



A result about SL(2,Z)

Definition

What is ∆0−definability in Z?

just consider a relative integer as couple in {0; 1} × N



A result about SL(2,Z)

Definition

Hence, a : N 7→ Z has a ∆0−definable graph

iff |a| has a ∆0−definable graph

and sign(a(i)) = 1 is a ∆0−definable relation



A result about SL(2,Z)

Theorem



A result about SL(2,Z)

Theorem

Let


N → SL(2,Z)

i →
(

a(i) b(i)
c(i) d(i)

)
where a, b, c , d are polynomialy bounded,

and

(
u v
w z

)
=

(
a(i) b(i)
c(i) d(i)

)
is a ∆0−definable relation



A result about SL(2,Z)

Theorem

THEN

(
u v
w z

)
=

(
a(0) b(0)
c(0) d(0)

)(
a(1) b(1)
c(1) d(1)

)
...

(
a(y) b(y)
c(y) d(y)

)
is ∆]N

0 definable



A result about SL(2,Z)

Idea of proof

Generalize the results about ∆0−definability concerning

the standard euclidean algorithm

to the least absolute remainder euclidean algorithm:



A result about SL(2,Z)

Idea of proof

rn = βnrn+1 + rn+2

where |rn+1|
2 < |rn+2| ≤ |rn+1|

2



Conclusion and further work



Conclusion and further work

The proof does not extend to

SL(3,Z)



Conclusion and further work

Question 1: Find a convenient definition for

Multiple Continued Fractions

for solving the SL(3,Z) case.



Conclusion and further work

Question 2: Compare both definitions of counting

modulo infinite monöıds

in the case of finitely generated

monöıds of matrices



Conclusion and further work

Work: Consider counting modulo infinite monöıds

in the case of a finite presentation

with generators and relations


