Weak Analysis: Metamathematics

Fernando Ferreira

Universidade de Lisboa

Journées sur les Arithmétiques Faibles 33 University of Gothenburg

June 16-18, 2014

I LISBOA | UNIVERSIDADE

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q*

Second-order arithmetic

 \blacktriangleright Z₂: Hilbert-Bernays

- ▶ *The big five:* Π_1^1 -CA₀ $ATR₀$ $ACA₀$ WKL₀ $RCA₀$
- \blacktriangleright RCA^{*}₀
- ^I *Weak analysis*: BTPSA $TCA²$ **BTFA**

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q*

Weak Analysis

"To find a mathematically significant subsystem of analysis whose class of provably recursive functions consist only of the computationally feasible ones."

Wilfried Sieg (1988)

 \triangleright BTFA: Base theory for feasible analysis

Real numbers, continuous functions, intermediate-value theorem. With (versions of) weak König's lemma: Heine-Borel theorem, uniform continuity theorem.

- \triangleright TCA²: Theory of counting arithmetic (analysis) Riemann integration and the fundamental theorem of calculus.
- \triangleright BTPSA: Base theory for polyspace analysis

II LISBOA BELISBOA

Basic set-up (fourteen open axioms)

$$
x\varepsilon = x \qquad x \times \varepsilon = \varepsilon
$$

\n
$$
x(y0) = (xy)0 \qquad x \times y0 = (x \times y)x
$$

\n
$$
x(y1) = (xy)1 \qquad x \times y1 = (x \times y)x
$$

\n
$$
x0 = y0 \rightarrow x = y \qquad x1 = y1 \rightarrow x = y
$$

\n
$$
x \subseteq \varepsilon \leftrightarrow x = \varepsilon
$$

\n
$$
x \subseteq y0 \leftrightarrow x \subseteq y \lor x = y0
$$

\n
$$
x \subseteq y1 \leftrightarrow x \subseteq y \lor x = y1
$$

\n
$$
x0 \neq y1
$$

\n
$$
x1 \neq \varepsilon
$$

We abbreviate $x \le y$ for $1 \times x \subseteq 1 \times y$. We write $x \equiv y$ for *x* ≤ *y* ∧ *y* ≤ *x*.I LISBOA | UNIVERSIDADE

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 9 Q Q *

Basic set-up (induction on notation)

We abbreviate *x* ⊆[∗] *y* for ∃*w*(*wx* ⊆ *y*). A *subword quantification* is a quantification of the form ∀*x* ⊆[∗] *t* (. . .) or ∃*x* ⊆[∗] *t* (. . .).

Definition

A Σ_1^b -formula is a formula of the form $\exists x\leq t\,\phi(x),$ where ϕ is a subword quantification (sw.q.) formula.

Note

Σ *b* 1 *-formulas define the NP-sets.*

Definition

The theory Σ_1^b -NIA is the theory constituted by the basic fourteen axioms and the following form of induction on notation:

$$
\phi(\varepsilon) \wedge \forall x(\phi(x) \to \phi(x0) \wedge \phi(x1)) \to \forall x \phi(x),
$$

where $\phi \in \Sigma_1^b$.

II LISBOA BELISBOA

KORKARA KERKER DAGA

The polytime functions

 \blacktriangleright Initial functions $C_0(x) = x0$ and $C_1(x) = x1$ **Projections** *Q*(*x*, *y*) = 1 ↔ *x* ⊆ *y*; *Q*(*x*, *y*) = 0 ∨ *Q*(*x*, *y*) = 1 \blacktriangleright Derived functions By composition By bounded recursion on notation: $f(\bar{x}, \epsilon) = g(\bar{x})$ $f(\bar{x}, y_0) = h_0(\bar{x}, y, f(\bar{x}, y))|_{t(\bar{x}, y)}$ $f(\bar{x}, y_1) = h_1(\bar{x}, y, f(\bar{x}, y))|_{t(\bar{x}, y)},$ where *t* is a term of the language and *q*|*^t* is the truncation of *q* at the length of *t*.

Note

We can introduce, via an extension by definitions, the polytime functions in the theory Σ *b* 1 *-*NIA*. Actually, we can see the latter theory as the extension of a quantifier-free calculus* PTCA*.*LISBOA WIVERSIDADE

KORK ERKER ADAM ADA

Buss' witness theorem

Theorem

If Σ_1^b -NIA $\vdash \forall x \exists y \theta(x, y)$, where $\theta \in \Sigma_1^b$, then there is a polytime d escription f such that PTCA $\vdash \theta(x, f(x))$,

Proof.

If there is a proof of $\exists y \theta(x, y)$ in Σ_1^b -NIA, then there is a proof of the sequent $\Rightarrow \exists y \theta(x, y)$ in a suitable calculus with the induction rule:

$$
\frac{\Gamma, \phi(\mathsf{v}) \Rightarrow \Delta, \phi(\mathsf{v0}) \qquad \Gamma, \phi(\mathsf{v}) \Rightarrow \Delta, \phi(\mathsf{v1})}{\Gamma, \phi(\epsilon) \Rightarrow \Delta, \phi(\mathsf{s})}
$$

where $\phi \in \Sigma^b_1$ and $\mathsf{\nu}$ is an eigenvariable.

By a partial cut-elimination theorem, we obtain a proof whose sequents have ∃∑^b-formulas only. We can carry along the proof a polytime witness for these sequents.

II LISBOA BELISBOA

KORK ERKER ADAM ADA

Bounded formulas

Definition

A *bounded formula* is a formula obtained from the atomic formulas using propositional connectives and bounded quantifications, i.e., quantifications of the form $\exists x \le t \phi(x)$ or $\forall x \le t \phi(x)$.

These formulas define the predicates in the polytime hierarchy.

Definition

The *bounded collection scheme* $B\Sigma_1$ is constituted by the formulas:

$$
\forall x \leq a \exists y \rho(x, y) \rightarrow \exists b \forall x \leq a \exists y \leq b \rho(x, y),
$$

where ρ is a bounded formula.

- \triangleright A Σ₁-formula is a formula of the form $\exists x \rho(x)$, where ρ is a bounded formula. These formulas define the recursively enumerable sets. Π_1 - formulas are defined dually.
- **►** A Π ₂-formula is a formula of the form \forall *x* \exists *y* ρ (*x*, *y*), LISBOA **WIVERSIDADE** where ρ is a bounded formula.

KORKARA KERKER DAGA

Buss' theorem on bounded collection

Theorem

 Σ_1^b -NIA + BΣ₁ *is* Π₂-conservative over Σ_1^b -NIA*.*

Proof.

Suppose that Σ_1^b -NIA + B Σ_1 $\vdash \forall x \exists y \rho(x,y)$, where ρ is a bounded formula. Then there is a proof of the sequent $\Rightarrow \exists v \rho(x, y)$ in a suitable calculus with the collection rule:

$$
\frac{\Gamma, v \le a \Rightarrow \Delta, \exists y \rho(v, y)}{\Gamma \Rightarrow \Delta, \exists b \forall x \le a \exists y \le b \rho(x, y)}
$$

where ρ is a bounded formula and v is an eigenvariable.

By a partial cut-elimination argument, we obtain a proof whose sequents are constituted by Σ_1 -formulas only. We can carry along this proof a suitable bound. E.g., if the sequent $\exists x \theta(x) \Rightarrow \exists y \phi(y)$ appears in the proof, then there is a term *t* such that

b Σ -NIA ` ∀*c*∀*x* ≤ *c*(θ(*x*) → ∃*y* ≤ *t*(*c*)φ(*y*)).1

The second-order theory BTFA

Definition

BTFA is the second-order theory whose axioms are Σ_1^b -NIA + B Σ_1 (allowing second-order parameters) plus the following recursive comprehension scheme:

$$
\forall x (\exists y \phi(x, y) \leftrightarrow \forall z \varphi(x, z)) \rightarrow \exists X \forall x (x \in X \leftrightarrow \exists y \phi(x, y))
$$

where ϕ is a $\exists \Sigma^\textit{b}_1$ -formula and φ is a $\forall \Pi^\textit{b}_1$ -formula, possibly with first and second-order parameters, and *X* does not occur in ϕ or φ .

Theorem

The theory BTFA *is first-order conservative over* Σ_1^b -NIA + B Σ_1 *.*

II LISBOA BELISBOA

KORKARA KERKER DAGA

The second-order theory BTFA **(continued)**

Proof.

Given $\mathcal M$ a model of Σ^b_1 -NIA + B Σ_1 , consider $\mathcal S$ the set of subsets of the domain of M which can be defined simultaneously by an ∃Σ *b* 1 -formula and a ∀Π *b* 1 -formula (with parameters). The structure $\langle \mathcal{M}, \mathcal{S} \rangle$ is a model of BTFA.

We show that, for each sw.q.-formula ϕ with second-order parameters, there are equivalent formulas ϕ_{Σ} and ϕ_{Π} (∃ Σ_1^b and $\forall \Pi_1^b,$ resp.) without second-order parameters. This uses bounded collection to deal with the closure under subword quantification.

Bounded collection is also needed to verify induction on notation. Suppose one has $\phi(\varepsilon) \wedge \neg \phi(x)$, with ϕ a Σ_1^b -formula. Then $\phi(x)$ is of the form $\exists y \leq t(x)\varphi(x, y)$, with φ a sw.q.-formula. We get in $\mathcal M$

$$
\forall w \subseteq x \forall y \leq t(w)[\varphi_{\Sigma}(w, y) \leftrightarrow \varphi_{\Pi}(w, y)].
$$

Now argue, using bounded collection, that we can bound the unbounded existential quantifier in $\varphi_{\Sigma}(w, y)$, for *w* and *y* LISBOA | UNIVERSIDADE ranging as above. $\begin{array}{c} \begin{array}{ccc} \text{1} & \text$

Weak König's lemma

Given a formula $\phi(x)$, *Tree*(ϕ_x) abbreviates:

$$
\forall x \forall y (\phi(x) \land y \subseteq x \to \phi(y)) \land \forall b \exists x \equiv b \phi(x).
$$

Path(*X*) abbreviates:

$$
Tree((x \in X)_x) \land \forall x \forall y \ (x \in X \land y \in X \rightarrow x \subseteq y \lor y \subseteq x).
$$

Definition

Weak König's lemma for trees defined by bounded formulas, denoted by Σ_0 -WKL, is the following scheme:

$$
Tree(\phi_x) \rightarrow \exists X (Path(X) \land \forall x (x \in X \rightarrow \phi(x))),
$$

where ϕ is a bounded formula and X is a new second-order variable.

I LISBOA | UNIVERSIDADE

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | K 9 Q Q

Another conservation result

Theorem

The theory BTFA +Σ0*-*WKL *is first-order conservative over* BTFA*.*

Proof.

Given $\langle M, S \rangle$ a countable model of BTFA and given *T* a subset of the first-order domain which is an (infinite) tree defined by a bounded formula, it is possible to obtain a subset *G* of the first-order domain such that *G* is a infinite path of *T* and

$$
\langle \mathcal{M}, \mathcal{S} \cup \{G\} \rangle \vdash \Sigma_1^b\text{-NIA} + B\Sigma_1.
$$

(By Harrington forcing.)

One can close this structure to get a model $\langle M, \mathcal{S}^{\star} \rangle$ of BTFA.

One can iterate this construction ω^2 times to get a model of BTFA +Σ0**-**WKL.

KORK ERKER ADAM ADA

Harrington forcing

- Fix a countable model $\langle \mathcal{M}, \mathcal{S} \rangle$ of BTFA.
- \blacktriangleright The *forcing conditions* are given by the set $\mathbb T$ of infinite trees defined by bounded formulas. A condition *Q* is stronger than a condition *T* if *Q* is contained in *T*.
- ► The *generic filter* is taken with respect to definable dense sets, where the notion of definable is sufficiently general to be closed under quantifications over the conditions (mere second-order definability is not enough).
- Inte *forcing language* includes constants for the elements of the domain of M and of S, and an extra second-order constant *C* (for the generic set).

$$
\triangleright \quad \mathcal{T} \Vdash x \in C \quad \text{is} \quad \exists b \forall w \equiv b \ (w \in \mathcal{T} \rightarrow x \subseteq w).
$$

KORKAR KERKER E VOOR

Harrington forcing (continued)

If G is a generic filter, then $G := \bigcap G$ is an infinite path. This uses the fact that, for each *b* in the domain of M ,

$$
\mathbb{D}_{b} := \{ T \in \mathbb{T} : (\mathcal{M}, \mathcal{S}) \models \exists^{1} x \, (x \equiv b \land x \in T) \}.
$$

is dense. Bounded collection is used to show this.

- ► That $\langle M, \mathcal{S} \cup \{G\} \rangle$ satisfies Σ^{*b*}₁-NIA is obvious (no forcing is needed).
- ▶ This is a *weak forcing notion*, i.e.,

 $T \Vdash \phi$ if, and only if, $\forall Q \leq T \exists R \leq Q (R \Vdash \phi)$.

 \triangleright *T* $\Vdash \phi$, for ϕ a Σ_1 -formula, is a Σ_1 -formula. From the *proof* of this fact, it can easily be argued that the structure I LISBOA | UNIVERSIDADE $\langle M, S \cup \{G\}\rangle$ satisfies bounded collection.

KORK ERKER ADAM ADA

Counting and polyspace computability

The *classe of polyspace computable functions* is obtained by adding to the scheme generating the polytime computable functions the scheme of bounded recursion:

$$
f(\bar{x}, \epsilon) = g(\bar{x})
$$

$$
f(\bar{x}, S(y)) = h(\bar{x}, y, f(y))_{|_{t(\bar{x}, y)}}
$$

where *S* is the successr function in the lexicographic order.

The *classe of counting* (hierarchy of counting functions) is obtained by adding instead the (weaker) scheme of counting:

$$
c(\bar{x}, \varepsilon) = \begin{cases} 0 & \text{if } f(\bar{x}, \varepsilon) = 1 \\ \varepsilon & \text{otherwise} \end{cases}
$$

$$
c(\bar{x}, S(y)) = \begin{cases} S(c(\bar{x}, y)) & \text{if } f(\bar{x}, S(y)) = 1 \\ c(\bar{x}, y) & \text{otherwise} \end{cases}
$$

I LISBOA | UNIVERSIDADE **Note** $c(\bar{x}, y) = \#\{w \leq y : f(\bar{x}, w) = 1\}.$ **KORK ERKEY EL POLO**

Second-order bounded variables

X t , *Y q* , *Z r* : second-order bounded variables.

They have a *characteristic* axiom:

$$
\forall X^t \forall y (y \in X^t \rightarrow y \leq t)
$$

where *y* does not occur in the term *t*.

- **Fig. 1** The $\Sigma_0^{b,1}$ -formulas constitute the smallest class of formulas containing the atomic formulas closed under bounded first-order quantifications. They define the (relativized) polytime hierarchy.
- ► A $\Sigma_1^{b,1}$ -formula is a formula of the form $\exists X^t \phi(X^t)$, where ϕ is a $\Sigma_0^{b,1}$ -formulas are defined dually.
- \triangleright The second-order bounded formulas constitute the smallest class of formulas containing the atomic formulas and closed under first and second-order bounded quantifications. | | [SBOA | BRUSSIDADE

Common axioms

 \triangleright Basic fourteen axioms and characteristic axioms.

Bounded comprehension for $\Sigma_0^{b,1}$ **-formulas** ϕ :

$$
\forall b \exists X^b \forall x \leq b(x \in X^b \leftrightarrow \phi(x)).
$$

- Induction on notation for $\Sigma_0^{b,1}$ -formulas. Ordinary induction for these formulas follows.
- Substitution scheme for $\Sigma_0^{b,1}$ -formulas:

$$
\forall x \leq b \exists X^z \, \phi(x, X^z) \rightarrow \exists Z^q \forall x \leq b \, \hat{\phi}(x, Z^q),
$$

where *q* is a concretely presented term and $\hat{\phi}$ is obtained from ϕ by replacing $s \in X^z$ by $\langle x, s \rangle \in Z^q$. I LISBOA | UNIVERSIDADE

KORK ERKER ADAM ADA

The two second-order bounded theories

Definition

The theory $\Sigma_1^{b,1}$ -NIA is the theory which adds to the commom axioms 1 induction on notation for $\Sigma_1^{b,1}$ -formulas.

Theorem

If $\Sigma_1^{b,1}$ -NIA $\vdash \forall x \exists y \phi(x,y)$, where ϕ is a $\Sigma_1^{b,1}$ -formula, then there is a $n \sum_{1}^{n}$ \sum_{1}^{n} $n \sum_{1}^{n}$ \sum_{2}^{n} $\varphi(\mathbf{x}, \mathbf{y})$, where φ is $a \sum_{1}^{n}$ φ
polyspace description f such that $\forall x \phi(x, f(x))$.

Definition

The theory TCA (theory of counting arithmetic) is the theory which adds to the common axioms a counting axiom $\forall z \exists Z^qCount(Z^q, X^z),$ where q is concretely presented and *Count* is a $\Sigma_0^{b,1}$ -formula which expresses that Z^q is the graph of the function $x \rightsquigarrow \{x \leq_l z : x \in X^z\}.$

Theorem

If $TCA \vdash \forall x \exists y \phi(x, y)$, where ϕ is a $\Sigma_1^{b,1}$ -formula, then there is a α is a α ₁ cominal, then the description of a counting function f such that $\forall x \phi(x, f(x))$.

Second-order bounded theories (continued)

Theorem

To either $\sum_{1}^{b,1}$ -NIA *or* TCA, we can add the scheme of collection for *bounded second-order formulas and get a conservative extension with respect to sentences of the form* $\forall x \exists y \phi(x, y)$ *, where* ϕ *is a bounded second-order formula.*

Lemma

The theory TCA *proves bounded comprehension for* ∆ *b*,1 1 *-formulas:*

$$
\forall x \leq b \left(\phi(x) \leftrightarrow \varphi(x) \right) \rightarrow \exists X^{b} \forall x \left(x \in X^{b} \leftrightarrow \phi(x) \right)
$$

where ϕ is a $\Sigma_1^{b,1}$ -formula and φ is a $\Pi_1^{b,1}$ -formula.

Proof.

Let $\psi(x,X^1)$ be the biconditional $\phi(x) \leftrightarrow 1 \in X^1.$ Note that ψ is $\Sigma^{b,1}_1$ and that TCA $\vdash \forall x \leq b \, \exists X^1(\phi(x) \leftrightarrow 1 \in X^1).$ By substitution, one gets

$$
\mathsf{TCA} \vdash \exists Z^q \forall x \leq b \, (\phi(x) \leftrightarrow \langle x, 1 \rangle \in Z^q).
$$

The second-order theories

The *second-order* theories are framed in the language of second-order arithmetic. Second-order bounded variables are canonically interpreted in this language.

Definition

The theory BTPSA is the theory $\Sigma_1^{b,1}$ -NIA together with the scheme of collection for bounded second-order formulas and the following recursive comprehension scheme:

 $\forall x (\exists y \phi(x, y) \leftrightarrow \forall z \phi(x, z)) \rightarrow \exists X \forall x (x \in X \leftrightarrow \exists y \phi(x, y))$

where ϕ is a $\exists \Sigma_1^{b,1}$ -formula and φ is a $\forall \Pi_1^{b,1}$ -formula.

The theory $TCA²$ is as above, but starting with TCA.

Theorem

The theory BTPSA *(resp.* TCA² *) is conservative over the theory* Σ *b*,1 1 *-*NIA *(resp.* TCA*) with the scheme of collection for bounded second-order formulas.***THISBOA** *INVERSIONDE*

KORKAR KERKER E VOOR

The FAN₀ principle

Definition

The $FAN₀$ principle is the schema

```
∀X∃xφ(x, X) → ∃b∀X∃x ≤ b φ(x, X),
```
where ϕ a second-order bounded formula (possibly with parameters) in which b does not occur. The contrapositive of $FAN₀$ is known as *strict* Π 1 1 *-reflection*.

Theorem

The theory BTPSA+FAN₀ (resp. TCA²+FAN₀) is conservative over BTPSA *(resp.* TCA² *) with respect to formulas without second-order unbounded quantifications.*

Proof.

A forcing argument *à la* Harrington, where the forcing conditions are infinite trees (defined by second-order bounded formulas) of bounded sets *X b* (understood as encoding the "binary sequence" LISBOA **FOR LISBOA** of its characteristic function).

S. Simpson: **Subsystems of Second Order Arithmetic**, Perspectives in Mathematical Logic, Springer-Verlag, 1999.

S. Buss: **Bounded Arithmetic**, Bibliopolis, Naples, 1986.

F. Ferreira: Polynomial Time Computable Arithmetic and Conservative Extensions. Ph.D. thesis, Pennsylvania State University, 1988.

F. Ferreira, "Polynomial time computable arithmetic." In: *Logic and Computation*, W. Sieg (editor), Contemporary Mathematics 106, American Mathematical Society 1990, 137-156.

II LISBOA BELISBOA

KORKARYKERKE PORCH

S. Buss, "A conservation result concerning bounded theories and the collection axiom." *Proc. Amer. Math. Soc.* 100, 709-716 (1987).

F. Ferreira, "A note on a result of Buss concerning bounded theories and the collection scheme." *Portugaliae Mathematica* 52, 331-336 (1995).

F. Ferreira, "A feasible theory for analysis." **The Journal of Symbolic Logic** 59, 1001-1011 (1994)

A. Fernandes, F. Ferreira & G. Ferreira, "Techniques in weak analysis for conservation results." In: *New Studies in Weak Arithmetics*, P. Cegielski, Ch. Cornaros and C. Dimitracopoulos ´ (eds.), CSLI Publications (Stanford) and Presses Universitaires (Paris 12) 2013, 115-147.LISBOA BELISBOADE

KORKARYKERKE PORCH

G. Ferreira: Aritmética Computável em Espaco Polinomial. Master thesis, Universidade de Lisboa, 2001.

R. Bianconi, G. Ferreira & E. Silva, "Bounded theories for polyspace computability." **Portugaliae Mathematica** 70, 295-318 (2013).

J. Johannsen & C. Pollett, "On proofs about threshold circuits and counting hierarchies." In: Thirteenth Annual IEEE Symposium on Logic in Computer Science, IEEE Press 1998,, 444-452.

G. Ferreira: Sistemas de Análise Fraca para Integração. Ph.D. thesis, Universidade de Lisboa, 2006.

II LISBOA BELISBOA

KOD KOD KED KED E VAN

J. Barwise: **Admissible Sets and Structures**. Perspectives in Mathematical Logic, Springer-Verlag, 1975.

A. Cantini, "Asymmetric interpretations for bounded theories." **Mathematical Logic Quarterly** 42, 270-288 (1996).

A. Fernandes: Investigações em Sistemas de Análise Exequível. Ph.D. thesis, Universidade de Lisboa, 2001.

II LISBOA BELISBOA

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q*

A. Fernandes, "Strict Π_1^1 -reflection in bounded arithmetic." **Archive for Mathematical Logic** 49, 17-34 (2009).

S. Cook & A. Urquhart, "Functional interpretations of feasibly constructive arithmetic." **Annals of Pure and Applied Logic** 63, 103-200 (1993).

F. Ferreira & P. Oliva, "Bounded functional interpretation and feasible analysis." **Annals of Pure and Applied Logic** 145, 115-129 (2007).

II LISBOA BELISBOA

KOD KOD KED KED E VAN

To be continued

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 9 Q Q *