Weak Analysis: Mathematics

Fernando Ferreira

Universidade de Lisboa

Journées sur les Arithmétiques Faibles 33 University of Gothenburg

June 16-18, 2014

I LISBOA | UNIVERSIDADE

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q*

Simple consequences of recursive comprehension

A function $f: X \mapsto Y$ is given by a set of ordered pairs. We can state $f(x) \in Z$ in two ways:

x ∈ *X* ∧ ∃*y*($\langle x, y \rangle$ ∈ *f* ∧ *y* ∈ *Z*)

$$
x\in X\wedge \forall y(\langle x,y\rangle \in f\rightarrow y\in Z)
$$

Thus, $\{x \in X : f(x) \in Z\}$ exists in BTFA.

Similar thing for the composition of two functions.

Proposition

The theory BTFA *proves the* ∃Σ *b* 1 *-path comprehension scheme, i.e.,*

$$
Path(\phi_x) \rightarrow \exists X \forall x (\phi(x) \leftrightarrow x \in X),
$$

where ϕ is $\exists \Sigma^b_1$ -formula.

Proof.

 $\phi(x)$ is equivalent to $\forall v (v \equiv x \land v \neq x \rightarrow \neg \phi(x)).$ IIIISROA FUNIVERSIDADE

Polytime arithmetic in Σ_1^b $\frac{D}{1}$ **-NIA**

- \blacktriangleright \mathbb{N}_1 : tally numbers (elements *u* such that $u = 1 \times u$). Model of $I\Delta_0$, but one can also make definitions by bounded recursion on the tally part.
- \blacktriangleright N₂: dyadic natural numbers of the form 1*w* or ε , where *w* is a binary string $(w \in \mathbb{W})$. Polytime arithmetic.
- ▶ **D**: dyadic rational numbers. Have the form $\langle \pm, x, y \rangle$, where *x* (resp. y) is ε or a binary string starting with 1 (resp. ending with 1). Dense ordered ring without extremes.

• Given
$$
n \in \mathbb{N}_1
$$
, 2^n is $\langle +, 1 \underbrace{00 \dots 0}_{n \text{ zeros}}, \epsilon \rangle$; 2^{-n} is $\langle +, \epsilon, \underbrace{00 \dots 0}_{n-1 \text{ zeros}} \rangle$.

 \triangleright D is not a field but it is always closed by divisions by tally powers of 2.**II LISBOA BELISBOA**

Real numbers in BTFA

Definition

We say that a function $\alpha : \mathbb{N}_1 \mapsto \mathbb{D}$ is a *real number* if $|\alpha(n)-\alpha(m)|\leq$ 2⁻ⁿ for all $n\leq m.$ Two real numbers α and β are said to be *equal*, and we write $\alpha = \beta$, if $\forall n \in \mathbb{N}_1 |\alpha(n) - \beta(n)| \leq 2^{-n+1}$.

The real number system is an ordered field. The relations $\alpha = \beta$, $\alpha\leq\beta,\,\alpha+\beta\leq\gamma,\,\ldots$ are \forall Π $_1^b$ -formulas, while $\alpha\neq\beta,\,\alpha<\beta,\,\ldots$ are ∃Σ^{*b*}-formulas.

A *dyadic real number* is a triple of the form $\langle \pm, x, X \rangle$ where $x \in \mathbb{N}_2$ and *X* is an infinite path.

II LISBOA BELISBOA

Continuous partial functions

Definition

Within BTFA, a (code for a) *continuous partial function* from R into R is a set of quintuples $\Phi \subseteq \mathbb{W} \times \mathbb{D} \times \mathbb{N}_1 \times \mathbb{D} \times \mathbb{N}_1$ such that:

- **1.** if $\langle x, \eta \rangle \Phi \langle y, k \rangle$ and $\langle x, \eta \rangle \Phi \langle y', k' \rangle$, then $|y y'| \leq 2^{-k} + 2^{-k'}$;
- **2.** if $\langle x, \eta \rangle \Phi \langle y, k \rangle$ and $\langle x', \eta' \rangle < \langle x, \eta \rangle$, then $\langle x', \eta' \rangle \Phi \langle y, k \rangle$;
- **3.** if $\langle x, \eta \rangle \Phi \langle y, k \rangle$ and $\langle y, k \rangle < \langle y', k' \rangle$, then $\langle x, \eta \rangle \Phi \langle y', k' \rangle$;

 w here $\langle x, n \rangle \Phi \langle y, k \rangle$ stands for $\exists \Sigma^b_1$ -relation $\exists w \, \langle w, x, n, y, k \rangle \in \Phi$, and where $\langle x', n' \rangle < \langle x, n \rangle$ means that $|x - x'| + 2^{-n'} < 2^{-n}$.

Definition

Let Φ be a continuous partial real function of a real variable. We say that a real number α is in the *domain* of Φ if

$$
\forall k \in \mathbb{N}_1 \exists n \in \mathbb{N}_1 \exists x, y \in \mathbb{D} \left(\left| \alpha - x \right| < 2^{-n} \wedge \langle x, n \rangle \Phi \langle y, k \rangle \right).
$$

I LISBOA | UNIVERSIDADE

Continuous functions (continued)

Definition

Let Φ be a continuous partial real function and let α be a real number in the domain of Φ . We say that a real number β is the *value of* α *under the function* Φ , and write $\Phi(\alpha) = \beta$, if

$$
\forall x,y\in\mathbb{D}\,\forall n,k\in\mathbb{N}_{1}\,[\langle x,n\rangle\Phi\langle y,k\rangle\wedge|\alpha-x|<2^{-n}\rightarrow|\beta-y|\leq2^{-k}].
$$

Note $\Phi(\alpha) = \beta$ is a $\forall \Pi_1^b$ notion. Etc.

Theorem (BTFA)

Let Φ *be a continuous partial real function and let* α *in the domain of* Φ*. Then there is a dyadic real number* β *such that* Φ(α) = β*. Moreover, this real number is unique.*

Corollary

Every real number can be put in dyadic form.

II LISBOA BELISBOA

Intermediate value theorem

Theorem (BTFA)

If Φ *is a continuous function which is total in the closed interval* [0, 1] *and if* $\Phi(0) < 0 < \Phi(1)$, then there is a real number $\alpha \in [0, 1]$ such *that* $\Phi(\alpha) = 0$ *.*

Proof.

Assume that there is no dyadic rational number $x \in [0, 1]$ such that $\Phi(x) = 0$. Consider $X := \{x : x \in \mathbb{D} \cap [0,1] \wedge \Phi(x) < 0\}$ (it exists!).

Define by bounded recursion along the tally part, the function $f : \mathbb{N}_1 \to \mathbb{D} \times \mathbb{D}$ according to the clauses $f(0) = \langle 0, 1 \rangle$ and

$$
f(n+1) = \begin{cases} \langle (f_0(n) + f_1(n))/2, f_1(n) \rangle & \text{if } (f_0(n) + f_1(n))/2 \in X \\ \langle f_0(n), (f_0(n) + f_1(n))/2 \rangle & \text{otherwise} \end{cases}
$$

where f_0 and f_1 are the first and second projections of f . These projections determine the same real α , and $\Phi(\alpha) = 0$. LISBOA MINERSIDADE

Real closed ordered fields

 \blacktriangleright The real system constitutes a real closed ordered field.

- \triangleright Can define polynomials of tally degree as functions $F: \{i \in \mathbb{N}_1 : i \leq d\} \times \mathbb{N}_1 \rightarrow \mathbb{D}$ such that, for every $i \leq d$, the function γ_i defined by $\gamma_i(n) = F(i, n)$ is a real number.
- \blacktriangleright Given $P(X) = \gamma_d X^d + \cdots + \gamma_1 X + \gamma_0$ can define it as a continuous function.
- \triangleright Generalize to series. Can introduce some transcendental functions. This has not been worked out.

II LISBOA BELISBOA

The Heine-Borel theorem

Definition (BTFA)

A (code for an) open set *U* is a set $U \subseteq W \times D \times N_1$. We say that a real number α is an *element* of U, and write $\alpha \in U$, if

$$
\exists z\in\mathbb{D}\exists n\in\mathbb{N}_1(|\alpha-z|<2^{-n}\wedge\exists w\langle w,z,n\rangle\in U).
$$

Suppose that *U* is an open set and that [0, 1] ⊆ *U*. The *Heine-Borel theorem* states the existence of $k \in \mathbb{N}_1$ such that, for all $\alpha \in [0, 1]$,

$$
\exists z\in\mathbb{D}, n\in\mathbb{N}_1, w\in\mathbb{W}\left(z, n, w\leq k \, \wedge\left|\alpha-z\right|<2^{-n}\wedge\left\langle w, z, n\right\rangle\in U\right)\!.
$$

Theorem (BTFA)

The Heine/Borel theorem for [0, 1] *is equivalent to* Π *b* 1 -WKL*.*

II LISBOA BELISBOA

KOD KARD KED KED BE YOUR

The uniform continuity theorem

Definition

Let $\Phi : [0, 1] \mapsto \mathbb{R}$ be a (total) continuous function. We say that Φ is *uniformly continuous* if

$$
\forall k \in \mathbb{N}_1 \exists m \in \mathbb{N}_1 \forall \alpha, \beta \in [0,1] \big(|\alpha - \beta| \leq 2^{-m} \rightarrow |\Phi(\alpha) - \Phi(\beta)| < 2^{-k} \big).
$$

Theorem (BTFA)

The principle that every (total) real valued continuous function defined on [0, 1] *is uniformly continuous implies* WKL *and is implied by* Π_1^b -WKL.

Proof.

The latter statement uses the Heine-Borel theorem. The former statement uses the following lemma:

Lemma (BTFA)

Let T be a subtree of W *with no infinite paths. There is a continuous (total) function defined on* [0, 1] *such that, for all end nodes x of T ,* $\Phi(x^*) = 2^{l(x)}$ (where $l(x)$ is the unary length of x).

K □ K K @ K K E K K E K G Q Q Q Q

The attainement of maximum

The Σ_1^b -IA induction principle is

$$
\phi(\epsilon) \land \forall x(\phi(x) \to \phi(S(x))) \to \forall x\phi(x),
$$

for $\phi \in \Sigma_1^b$.

Note

Over BTFA*, the* Σ *b* 1 -IA *induction principle is equivalent to saying that every non-empty bounded set X of* W *has a lexicographic maximum (minimum).*

Theorem

Over BTFA + Σ_0 -WKL, the following are equivalent:

- **(a)** Every (total) real valued continuous function defined on [0, 1] has a maximum.
- **(b)** Every (total) real valued continuous function defined on [0, 1] has a supremum.

(c)
$$
\Sigma_1^b
$$
-IA.

I LISBOA | UNIVERSIDADE

KORKARA KERKER DAGA

Integration and counting

Given $X \subseteq \mathbb{N}_2$ a non-empty subset, let Φ_X be the continuous function

Integration and counting (continued)

The counting function *f* up to *b* is given simultaneously by:

$$
f = \{ \langle x, n \rangle : x, n \in \mathbb{N}_2, x \leq b + 1, \int_0^x \Phi_X(t) dt =_{\mathbb{R}} n_{\mathbb{R}} \}
$$

 $f = \{ \langle x, n \rangle : x, n \in \mathbb{N}_2, x \leq b+1, n-\frac{1}{2} <_{\mathbb{R}} \int_0^x \Phi_X(t) dt <_{\mathbb{R}} n_{\mathbb{R}} + \frac{1}{2} \}$

Get *f* by (the) recursive comprehension (available in BTFA).

How does one prove that the two above definitions coincide? Can we show that, for each $x \leq b$, $\int_0^x \Phi_X(t) dt$ is equal to a (dyadic) natural number. By induction? *Prima facie*, we do have have this kind of induction!

- **1.** The unbounded quantifiers can be dealt by judicious uses of bounded collection.
- **2.** Σ^{*b*}₁-IA induction is available because we can prove that every non-empty set has a minimum. Use the intermediate value
theorem!
I IISBNA theorem!

KORKAR KERKER E VOOR

Counting and integration

If we can count, then we can add:

$$
\sum_{w=0}^x f(w) = \#\{u : \exists w \leq_2 x \exists y <_2 f(w) (u = \langle w, y \rangle)\}.
$$

Definition

Let Φ be a continuous total function on [0,1]. A *modulus of uniform continuity (m.u.c)* is a strictly increasing function $h : \mathbb{N}_1 \mapsto \mathbb{N}_1$ such that

$$
\forall n \in \mathbb{N}_1 \forall \alpha, \beta \in [0,1] (|\alpha-\beta| \leq 2^{-h(n)} \rightarrow |\Phi(\alpha)-\Phi(\beta)| < 2^{-n}).
$$

Note

Over TCA² + Σ_0 -WKL, if Φ *is a continuous total function on* [0,1] *then* Φ *has a m.u.c.*I LISBOA | UNIVERSIDADE

KOD KARD KED KED BE YOUR

Counting and integration (continued)

Definition (TCA² **)**

Take Φ a continuous total function on [0,1] with a m.u.c. *h*. The *integral of* Φ *between 0 and 1* is defined by

$$
\int_0^1 \Phi(t) dt :=_{\mathbb{R}} \lim_n S_n.
$$

where, for all $n \in \mathbb{N}_1$, $S_n = \sum_{w=0}^{2^{h(n)}} \frac{1}{2^{h(n)}} \Phi(\frac{w}{2^{h(n)}}, n)$. Here $\Phi(r, n)$ is a suitable approximation of Φ(*r*).

Note

The above definition readily extends to integration for intervals with dyadic rational points as limits.

Let $d : \mathbb{D} \mapsto \mathbb{D}$ be:

$$
d(x) = \begin{cases} 0 & \text{if } x < 0 \\ x & \text{if } 0 \le x \le 1 \\ 1 & \text{if } 1 < x \end{cases}
$$

KORK ERKER ADAM ADA

The fundamental theorem of calculus

Given Φ a continuous total function on [0,1] with m.u.c. *h*, define $\langle x, n \rangle \Psi \langle y, k \rangle$ as follows:

$$
x, y \in \mathbb{D} \wedge n, k \in \mathbb{N}_1 \wedge \left| \int_0^{d(x)} \Phi(t) dt \right| < \frac{1}{2^k} - \frac{1}{2^{n-m-1}},
$$

where $m \in \mathbb{N}_1$ is such that $\forall \alpha \in [0,1]$ $|\Phi(\alpha)| \leq 2^m$.

The above Ψ gives, within TCA², the definition of the continuous real function $\alpha \rightsquigarrow \int_0^\alpha \Phi(t) dt$.

II LISBOA BELISBOA

KORKARA KERKER DAGA

It is easy to prove that the derivative of Ψ at α is $\Phi(\alpha)$.

On continuous functions

- \triangleright Takeshi Yamazaki defined continuity via uniform approximations of piecewise linear functions. Uniform continuity is built in.
- \triangleright What about defining continuity via uniform approximations of polynomials? Do we get a nice theory of integration in BTFA?
- \triangleright Weierstrass' approximation theorem: every (uniformly) continuous function on [0,1] is uniformly approximated by polynomials.
- ▶ Conjecture. Over BTFA (or close enough), Weierstrass' approximation theorem is equivalent to the totality of exponentiation.

II LISBOA BELISBOA

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q*

Interpretability in Robinson's Q

- \triangleright The theories IΔ₀ + Ω_n are interpretable in Robinson's Q.
- \triangleright Ω_{n+1} means that the logarithmic part satisfies Ω_n .
- \triangleright The RSUV isomorphism characterizes the theory of the logarithmic part of a model (and vice-versa).
- \blacktriangleright Hence, lots of interpretability in Q. Basically, it includes any computations that take a (fixed) iterated exponential number of steps. The "fixed" is for the number of iterations.

II LISBOA BELISBOA

KORKARA KERKER DAGA

Note that $I\Delta_0$ + exp is not interpretable in Q.

Interpretability in Robinson's Q **(continued)**

Theorem

The theory BTFA *is interpretable in Robinson's* Q*.*

Proof.

Let $U(e, x, y, p, c)$ be a 5-ary sw.q.-formula with the universal property according to which, for every ternary sw.q.-formula $\psi(x, y, p)$, there is a (standard) binary string *e* such that

$$
\Sigma^b_1\text{-NIA}\,\vdash\,\forall x\forall y\forall p(\psi(x,y,p)\leftrightarrow \exists c\,U(e,x,y,p,c)).
$$

Define

$$
Set(\alpha) := \forall x (\exists w U(\alpha_0, x, w_0, \alpha_1, w_1) \leftrightarrow \forall w \neg U(\alpha_2, x, w_0, \alpha_3, w_1)),
$$

where α is seen as the quadruple $\langle \alpha_0, \alpha_1, \alpha_2, \alpha_3 \rangle$.

Corollary

Tarski's theory of real closed ordered fields is interpretable in Q*.*

 \triangleright BTPSA is interpretable in Q. Can get more than that! **TISBOA** Question: Can we add (suitable versions of) weak König's lemma and still get interpret[ab](#page-17-0)il[ity](#page-19-0)[in](#page-18-0) [Q](#page-19-0)[?](#page-0-0) 000

П

References

A. Fernandes & F. Ferreira, "Groundwork for weak analysis." **The Journal of Symbolic Logic** 67, 557-578 (2002).

A. Fernandes & F. Ferreira, "Basic applications of weak König's lemma in feasible analysis." In: *Reverse Mathematics 2001*, S. Simpson (editor), Association for Symbolic Logic / A K Peters 2005, 175-188.

F. Ferreira & Gilda Ferreira, "Counting as integration in feasible analysis." **Mathematical Logic Quarterly** 52, 315-320 (2006).

F. Ferreira & G. Ferreira, "The Riemann integral in weak systems of analysis." **Journal of Universal Computer Science** 14, 908-937 (2008).

II LISBOA BELISBOA

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q*

References

T. Yamazaki, "Reverse mathematics and weak systems of 0-1 for feasible analysis." In: *Reverse Mathematics 2001*, S. Simpson (editor), Association for Symbolic Logic / A K Peters 2005, 394-401.

A. Fernandes, "The Baire category theorem over a feasible base theory." In: *Reverse Mathematics 2001*, S. Simpson (editor), Association for Symbolic Logic / A K Peters 2005, 164-174.

E. Nelson: **Predicative Arithmetic**. Mathematical Notes, Princeton University Press, 1986.

Hajek, Pudlák: Metamathematics of First-order Arithmetic. Perspectives in Mathematical Logic, Springer-Verlag, 1993.

F. Ferreira & G. Ferreira, "Interpretability in Robinson's Q." **The Bulletin of Symbolic Logic** 19, 289-317 (2013).

KOD KOD KED KED E VAN

Thank you

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ .. 할 .. 990