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Simple consequences of recursive comprehension

A function f : X 7→ Y is given by a set of ordered pairs. We can state
f (x) ∈ Z in two ways:

x ∈ X ∧ ∃y(〈x , y〉 ∈ f ∧ y ∈ Z )

x ∈ X ∧ ∀y(〈x , y〉 ∈ f → y ∈ Z )

Thus, {x ∈ X : f (x) ∈ Z} exists in BTFA.

Similar thing for the composition of two functions.

Proposition
The theory BTFA proves the ∃Σb

1-path comprehension scheme, i.e.,

Path(φx )→ ∃X∀x(φ(x)↔ x ∈ X ),

where φ is ∃Σb
1-formula.

Proof.
φ(x) is equivalent to ∀y(y ≡ x ∧ y 6= x → ¬φ(x)).



Polytime arithmetic in Σb
1-NIA

I N1: tally numbers (elements u such that u = 1× u). Model of
I∆0, but one can also make definitions by bounded recursion on
the tally part.

I N2: dyadic natural numbers of the form 1w or ε, where w is a
binary string (w ∈W). Polytime arithmetic.

I D: dyadic rational numbers. Have the form 〈±, x , y〉, where x
(resp. y ) is ε or a binary string starting with 1 (resp. ending with
1). Dense ordered ring without extremes.

I Given n ∈ N1, 2n is 〈+,1 00 . . . 0︸ ︷︷ ︸
n zeros

, ε〉; 2−n is 〈+, ε, 00 . . . 0︸ ︷︷ ︸
n−1 zeros

1〉.

I D is not a field but it is always closed by divisions by tally powers
of 2.



Real numbers in BTFA

Definition
We say that a function α : N1 7→ D is a real number if
|α(n)− α(m)| ≤ 2−n for all n ≤ m. Two real numbers α and β are said
to be equal, and we write α = β, if ∀n ∈ N1|α(n)− β(n)| ≤ 2−n+1.

The real number system is an ordered field. The relations α = β,
α ≤ β, α + β ≤ γ, . . . are ∀Πb

1-formulas, while α 6= β, α < β, . . . are
∃Σb

1-formulas.

A dyadic real number is a triple of the form 〈±, x ,X 〉 where x ∈ N2
and X is an infinite path.



Continuous partial functions

Definition
Within BTFA, a (code for a) continuous partial function from R into R
is a set of quintuples Φ ⊆W× D× N1 × D× N1 such that:

1. if 〈x ,n〉Φ〈y , k〉 and 〈x ,n〉Φ〈y ′, k ′〉, then |y − y ′| ≤ 2−k + 2−k ′
;

2. if 〈x ,n〉Φ〈y , k〉 and 〈x ′,n′〉 < 〈x ,n〉, then 〈x ′,n′〉Φ〈y , k〉;
3. if 〈x ,n〉Φ〈y , k〉 and 〈y , k〉 < 〈y ′, k ′〉, then 〈x ,n〉Φ〈y ′, k ′〉;

where 〈x ,n〉Φ〈y , k〉 stands for ∃Σb
1-relation ∃w 〈w , x ,n, y , k〉 ∈ Φ, and

where 〈x ′,n′〉 < 〈x ,n〉 means that |x − x ′|+ 2−n′
< 2−n.

Definition
Let Φ be a continuous partial real function of a real variable. We say
that a real number α is in the domain of Φ if

∀k ∈ N1∃n ∈ N1∃x , y ∈ D
(
|α− x | < 2−n ∧ 〈x ,n〉Φ〈y , k〉

)
.



Continuous functions (continued)

Definition
Let Φ be a continuous partial real function and let α be a real number
in the domain of Φ. We say that a real number β is the value of α
under the function Φ, and write Φ(α) = β, if

∀x , y ∈ D ∀n, k ∈ N1 [〈x ,n〉Φ〈y , k〉 ∧ |α− x | < 2−n → |β − y | ≤ 2−k ].

Note
Φ(α) = β is a ∀Πb

1 notion. Etc.

Theorem (BTFA)
Let Φ be a continuous partial real function and let α in the domain of
Φ. Then there is a dyadic real number β such that Φ(α) = β.
Moreover, this real number is unique.

Corollary
Every real number can be put in dyadic form.



Intermediate value theorem

Theorem (BTFA)
If Φ is a continuous function which is total in the closed interval [0,1]
and if Φ(0) < 0 < Φ(1), then there is a real number α ∈ [0,1] such
that Φ(α) = 0.

Proof.
Assume that there is no dyadic rational number x ∈ [0,1] such that
Φ(x) = 0. Consider X := {x : x ∈ D ∩ [0,1] ∧ Φ(x) < 0} (it exists!).

Define by bounded recursion along the tally part, the function
f : N1 → D× D according to the clauses f (0) = 〈0,1〉 and

f (n + 1) =

{
〈(f0(n) + f1(n))/2, f1(n)〉 if (f0(n) + f1(n))/2 ∈ X
〈f0(n), (f0(n) + f1(n))/2〉 otherwise

where f0 and f1 are the first and second projections of f . These
projections determine the same real α, and Φ(α) = 0.



Real closed ordered fields

I The real system constitutes a real closed ordered field.

I Can define polynomials of tally degree as functions
F : {i ∈ N1 : i ≤ d} × N1 → D such that, for every i ≤ d , the
function γi defined by γi (n) = F (i ,n) is a real number.

I Given P(X ) = γdX d + · · ·+ γ1X + γ0 can define it as a
continuous function.

I Generalize to series. Can introduce some transcendental
functions. This has not been worked out.



The Heine-Borel theorem

Definition (BTFA)
A (code for an) open set U is a set U ⊆W× D× N1. We say that a
real number α is an element of U, and write α ∈ U, if

∃z ∈ D∃n ∈ N1(|α− z| < 2−n ∧ ∃w〈w , z,n〉 ∈ U).

Suppose that U is an open set and that [0,1] ⊆ U. The Heine-Borel
theorem states the existence of k ∈ N1 such that, for all α ∈ [0,1],

∃z ∈ D,n ∈ N1,w ∈W (z,n,w ≤ k ∧ |α− z| < 2−n ∧ 〈w , z,n〉 ∈ U).

Theorem (BTFA)
The Heine/Borel theorem for [0,1] is equivalent to Πb

1-WKL.



The uniform continuity theorem
Definition
Let Φ : [0,1] 7→ R be a (total) continuous function. We say that Φ is
uniformly continuous if

∀k ∈ N1∃m ∈ N1∀α, β ∈ [0,1](|α− β| ≤ 2−m → |Φ(α)−Φ(β)| < 2−k ).

Theorem (BTFA)
The principle that every (total) real valued continuous function defined
on [0,1] is uniformly continuous implies WKL and is implied by
Πb

1-WKL.

Proof.
The latter statement uses the Heine-Borel theorem. The former
statement uses the following lemma:

Lemma (BTFA)
Let T be a subtree of W with no infinite paths. There is a continuous
(total) function defined on [0,1] such that, for all end nodes x of T ,
Φ(.x∗) = 2l(x) (where l(x) is the unary length of x).



The attainement of maximum

The Σb
1-IA induction principle is

φ(ε) ∧ ∀x(φ(x)→ φ(S(x)))→ ∀xφ(x),

for φ ∈ Σb
1.

Note
Over BTFA, the Σb

1-IA induction principle is equivalent to saying that
every non-empty bounded set X of W has a lexicographic maximum
(minimum).

Theorem
Over BTFA + Σ0-WKL, the following are equivalent:
(a) Every (total) real valued continuous function defined on [0,1] has

a maximum.
(b) Every (total) real valued continuous function defined on [0,1] has

a supremum.
(c) Σb

1-IA.



Integration and counting
Given X ⊆ N2 a non-empty subset, let ΦX be the continuous function
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where a “spike” follows x exactly when x ∈ X .



Integration and counting (continued)
The counting function f up to b is given simultaneously by:

f = {〈x ,n〉 : x ,n ∈ N2, x ≤ b + 1,
∫ x

0 ΦX (t)dt =R nR}

f = {〈x ,n〉 : x ,n ∈ N2, x ≤ b + 1, n− 1
2 <R

∫ x
0 ΦX (t)dt <R nR + 1

2}

Get f by (the) recursive comprehension (available in BTFA).

How does one prove that the two above definitions coincide? Can we
show that, for each x ≤ b,

∫ x
0 ΦX (t)dt is equal to a (dyadic) natural

number. By induction? Prima facie, we do have have this kind of
induction!

1. The unbounded quantifiers can be dealt by judicious uses of
bounded collection.

2. Σb
1-IA induction is available because we can prove that every

non-empty set has a minimum. Use the intermediate value
theorem!



Counting and integration

I If we can count, then we can add:

x∑
w=0

f (w) = #{u : ∃w ≤2 x∃y <2 f (w) (u = 〈w , y〉)}.

Definition
Let Φ be a continuous total function on [0,1]. A modulus of uniform
continuity (m.u.c) is a strictly increasing function h : N1 7→ N1 such
that

∀n ∈ N1∀α, β ∈ [0,1](|α− β| ≤ 2−h(n) → |Φ(α)− Φ(β)| < 2−n).

Note
Over TCA2 + Σ0-WKL, if Φ is a continuous total function on [0,1] then
Φ has a m.u.c.



Counting and integration (continued)
Definition (TCA2)
Take Φ a continuous total function on [0,1] with a m.u.c. h. The
integral of Φ between 0 and 1 is defined by∫ 1

0
Φ(t)dt :=R lim

n
Sn.

where, for all n ∈ N1, Sn =
∑2h(n)−1

w=0
1

2h(n) Φ( w
2h(n) ,n). Here Φ(r ,n) is a

suitable approximation of Φ(r).

Note
The above definition readily extends to integration for intervals with
dyadic rational points as limits.
Let d : D 7→ D be:

d(x) =


0 if x < 0
x if 0 ≤ x ≤ 1
1 if 1 < x



The fundamental theorem of calculus

Given Φ a continuous total function on [0,1] with m.u.c. h, define
〈x ,n〉Ψ〈y , k〉 as follows:

x , y ∈ D ∧ n, k ∈ N1 ∧

∣∣∣∣∣
∫ d(x)

0
Φ(t)dt

∣∣∣∣∣ < 1
2k −

1
2n−m−1 ,

where m ∈ N1 is such that ∀α ∈ [0,1] |Φ(α)| ≤ 2m.

I The above Ψ gives, within TCA2, the definition of the continuous
real function α;

∫ α

0 Φ(t)dt .

I It is easy to prove that the derivative of Ψ at α is Φ(α).



On continuous functions

I Takeshi Yamazaki defined continuity via uniform approximations
of piecewise linear functions. Uniform continuity is built in.

I What about defining continuity via uniform approximations of
polynomials? Do we get a nice theory of integration in BTFA?

I Weierstrass’ approximation theorem: every (uniformly)
continuous function on [0,1] is uniformly approximated by
polynomials.

I Conjecture. Over BTFA (or close enough), Weierstrass’
approximation theorem is equivalent to the totality of
exponentiation.



Interpretability in Robinson’s Q

I The theories I∆0 + Ωn are interpretable in Robinson’s Q.

I Ωn+1 means that the logarithmic part satisfies Ωn.

I The RSUV isomorphism characterizes the theory of the
logarithmic part of a model (and vice-versa).

I Hence, lots of interpretability in Q. Basically, it includes any
computations that take a (fixed) iterated exponential number of
steps. The “fixed” is for the number of iterations.

I Note that I∆0 + exp is not interpretable in Q.



Interpretability in Robinson’s Q (continued)
Theorem
The theory BTFA is interpretable in Robinson’s Q.

Proof.
Let U(e, x , y ,p, c) be a 5-ary sw.q.-formula with the universal
property according to which, for every ternary sw.q.-formula
ψ(x , y ,p), there is a (standard) binary string e such that

Σb
1-NIA ` ∀x∀y∀p(ψ(x , y ,p)↔ ∃c U(e, x , y ,p, c)).

Define

Set(α) := ∀x(∃wU(α0, x ,w0, α1,w1)↔ ∀w¬U(α2, x ,w0, α3,w1)),

where α is seen as the quadruple 〈α0, α1, α2, α3〉.

Corollary
Tarski’s theory of real closed ordered fields is interpretable in Q.

I BTPSA is interpretable in Q. Can get more than that!
Question: Can we add (suitable versions of)
weak König’s lemma and still get interpretability in Q?
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