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Simple consequences of recursive comprehension
A function f: X — Y is given by a set of ordered pairs. We can state
f(x) € Z in two ways:
xeXNIy(x,yyefrye2)
xeXAVy((x,y)ef—yeZ)

Thus, {x € X : f(x) € Z} exists in BTFA.

Similar thing for the composition of two functions.

Proposition

The theory BTFA proves the 32?-path comprehension scheme, i.e.,
Path(¢x) — IXVX(p(x) < x € X),

where ¢ is 3X°-formula.

Proof.
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Polytime arithmetic in X°-NIA

» Nj: tally numbers (elements u such that u = 1 x u). Model of
IAg, but one can also make definitions by bounded recursion on
the tally part.

» No: dyadic natural numbers of the form 1w or ¢, where wis a
binary string (w € W). Polytime arithmetic.

» D: dyadic rational numbers. Have the form (£, x, y), where x
(resp. y) is € or a binary string starting with 1 (resp. ending with
1). Dense ordered ring without extremes.

» Given n € Ny, 27is (+,100...0,¢); 27" is (+,¢,00...01).
~— ~—

n zeros n—1 zeros

» D is not a field but it is always closed by divisions by tally powers
of 2. UJ uison | e



Real numbers in BTFA

Definition

We say that a function « : Ny — DD is a real number if

la(n) — a(m)| < 2" for all n < m. Two real numbers « and g are said
to be equal, and we write o = 3, if Yn € Ny |a(n) — B(n)| < 2-"+1.

The real number system is an ordered field. The relations o = 3,
a<B,a+pB<n,...are VNP-formulas, while a # B, a < 3, ...are
Jxf-formulas.

A dyadic real number is a triple of the form (+, x, X) where x € N,
and X is an infinite path.
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Continuous partial functions

Definition
Within BTFA, a (code for a) continuous partial function from R into R
is a set of quintuples ® C W x D x Ny x D x Ny such that:

1. if (x,n)®(y, k) and (x, n)d(y’, k'), then |y — y’| < 27k 4 2=,

2. if (x,nm®(y, k) and (x’, ") < (x,n), then (x’, n")d(y, k);

3. if (x, n)®(y, k) and (y, k) < (y', k'), then (x, m®(y’, k');
where (x, n)®(y, k) stands for 3x2-relation 3w (w, x, n, y, k) € &, and
where (x', ') < (x,n) means that |x — x| + 2" < 27"
Definition
Let ® be a continuous partial real function of a real variable. We say
that a real number « is in the domain of ¢ if

Vk e Ny3ne Ny3x,y € D (Jao— x| <277 A (x,n)®(y, k)) .
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Continuous functions (continued)

Definition

Let @ be a continuous partial real function and let « be a real number
in the domain of ®. We say that a real number £ is the value of
under the function ®, and write ¢(a) = 3, if

Vx,y € DVn, k € Ny [(x, )y, k) Ala— x| <277 — |8 — y| < 27K].

Note
¢(a) = B is a VI notion. Etc.

Theorem (BTFA)

Let & be a continuous partial real function and let « in the domain of
®. Then there is a dyadic real number 3 such that ®(a) = 5.
Moreover, this real number is unique.

Corollary
Every real number can be put in dyad/C form. U LISBOA ‘ UNIVERSIDADE
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Intermediate value theorem

Theorem (BTFA)

If & is a continuous function which is total in the closed interval [0, 1]
and if (0) < 0 < ®(1), then there is a real number o € [0, 1] such
that () = 0.

Proof.
Assume that there is no dyadic rational number x € [0, 1] such that
®(x) = 0. Consider X := {x: x e DN [0,1] A ®(x) < 0} (it exists!).

Define by bounded recursion along the tally part, the function
f: Ny — D x D according to the clauses f(0) = (0, 1) and

_ J{(f(n) + £(n))/2,fi(n)) if (k(n)+fi(n)/2 e X
f(n+1) = .
(fo(n), (f(n) + fi(n))/2) otherwise
where fy and f; are the first and second projections of f. These
projections determine the same real «, and ®(a) = 0. U LISBOA ‘ wRSIAOE
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Real closed ordered fields

v

The real system constitutes a real closed ordered field.

v

Can define polynomials of tally degree as functions
F:{ieNy:i<d} xNy— Dsuch that, for every i < d, the
function ~; defined by ~,(n) = F(i, n) is a real number.

v

Given P(X) = v X? + -+ 4+ y1X 4+ 7o can define it as a
continuous function.

v

Generalize to series. Can introduce some transcendental
functions. This has not been worked out.
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The Heine-Borel theorem

Definition (BTFA)

A (code for an) open set Uisaset U C W x D x Ny. We say that a
real number « is an element of U, and write o € U, if

JzeD3ne Ny(Ja—z| <27"AIw(w, z,n) € U).

Suppose that U is an open set and that [0, 1] C U. The Heine-Borel
theorem states the existence of k € Ny such that, for all « € [0, 1],

dzeD,neNy,weW(z,nw<KkA|a—2z| <2 "A{(w,z,n) € U).

Theorem (BTFA)
The Heine/Borel theorem for [0, 1] is equivalent to NM?-WKL.
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The uniform continuity theorem

Definition
Let ¢ : [0, 1] — R be a (total) continuous function. We say that ¢ is
uniformly continuous if

Yk € Ny3m € NyVa, 8 € [0,1](Ja — 8] <27™ = |d(a) — d(8)| < 27F).

Theorem (BTFA)
The principle that every (total) real valued continuous function defined

on [0, 1] is uniformly continuous implies WKL and is implied by
n-WKL.

Proof.
The latter statement uses the Heine-Borel theorem. The former
statement uses the following lemma:

Lemma (BTFA)

Let T be a subtree of W with no infinite paths. There is a continuous
(total) function defined on [0, 1] such that, for all end nodes x of T,
o(.x*) = 2/ (where I(x) is the unary length of x). UJ Lisson
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The attainement of maximum

The £-I1A induction principle is

¢(€) ANVx(¢(x) = ¢(S(x))) = Vxo(x),
for ¢ € 2.
Note

Over BTFA, the ¥2-1A induction principle is equivalent to saying that

every non-empty bounded set X of W has a lexicographic maximum
(minimum).

Theorem
Over BTFA + X,-WKL, the following are equivalent:

(a) Every (total) real valued continuous function defined on [0, 1] has
a maximum.

(b) Every (total) real valued continuous function defined on [0, 1] has
a supremum.
c) Xb-1A.
(©) % UJ LisBoA | s



Integration and counting

Given X C Ny a non-empty subset, let ®x be the continuous function

, LISBOA | B
where a “spike” follows x exactly when x € X. U ‘



Integration and counting (continued)

The counting function f up to b is given simultaneously by:
f={(x,n:x,neNa,x <b+1, [ Ox(t)dt =g N}

f={x,n:x,neNg,x < b+1, n— <Rf0 dx(t)dt <g Me+ 3}
Get f by (the) recursive comprehension (available in BTFA).

How does one prove that the two above definitions coincide? Can we
show that, for each x < b, fOX dx(t)dt is equal to a (dyadic) natural
number. By induction? Prima facie, we do have have this kind of
induction!

1. The unbounded quantifiers can be dealt by judicious uses of
bounded collection.

2. ¥5-1A induction is available because we can prove that every
non-empty set has a minimum. Use the intermediate value
theorem! U LISBOA \ s



Counting and integration

» If we can count, then we can add:

> f(w) = #{u: 3w <z x3y <z f(w) (u= (w,y))}.
w=0

Definition

Let ® be a continuous total function on [0,1]. A modulus of uniform
continuity (m.u.c) is a strictly increasing function h : Ny — Ny such
that

¥n e NyVa, 8 € [0,1](Ja — 8] <271 5 |d(a) — &(8)] < 277).

Note
Over TCA? + ¥o-WKL, if & is a continuous total function on [0,1] then
® has a m.u.c.
UJ LisBoA | s



Counting and integration (continued)

Definition (TCA?)
Take ¢ a continuous total function on [0,1] with a m.u.c. h. The
integral of ® between 0 and 1 is defined by

1
/ (t)dt == lim Sp.
0 n

) _ .
where, forall ne Ny, Sy = 32" s ® (505, ). Here &(r, n) is a

suitable approximation of ®(r).

Note
The above definition readily extends to integration for intervals with
dyadic rational points as limits.

Letd: D~ D be:

0 ifx<O0
dix)=<x f0<x<1
1 if1<x L) LisBoA | e



The fundamental theorem of calculus

Given ¢ a continuous total function on [0,1] with m.u.c. h, define
(x, MWy, k) as follows:

1 1

X,yED/\n,kEN1/\ <§—W7

d(x)
/ o(t)dt
0

where m € Ny is such that Va € [0, 1] |[®(«)| < 2™.

» The above W gives, within TCA?, the definition of the continuous
real function o ~ [;* ®(t)dt.

» It is easy to prove that the derivative of ¥ at « is ®(«).
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On continuous functions

» Takeshi Yamazaki defined continuity via uniform approximations
of piecewise linear functions. Uniform continuity is built in.

» What about defining continuity via uniform approximations of
polynomials? Do we get a nice theory of integration in BTFA?

» Weierstrass’ approximation theorem: every (uniformly)
continuous function on [0,1] is uniformly approximated by
polynomials.

» Conjecture. Over BTFA (or close enough), Weierstrass’
approximation theorem is equivalent to the totality of
exponentiation.
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Interpretability in Robinson’s Q

v

The theories 1Ag + Q5 are interpretable in Robinson’s Q.
Q11 means that the logarithmic part satisfies Q.

The RSUV isomorphism characterizes the theory of the
logarithmic part of a model (and vice-versa).

Hence, lots of interpretability in Q. Basically, it includes any
computations that take a (fixed) iterated exponential number of
steps. The “fixed” is for the number of iterations.

Note that I1Ag + exp is not interpretable in Q.
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Interpretability in Robinson’s Q (continued)

Theorem
The theory BTFA is interpretable in Robinson’s Q.

Proof.

Let U(e, x, y,p, c) be a 5-ary sw.q.-formula with the universal
property according to which, for every ternary sw.q.-formula
¥(x,y,p), there is a (standard) binary string e such that

Z$'N|A + VXVpr(l[/(X’y,P) A ElCU(ev X, ¥, P, C))
Define
Set(a) := Vx(3wU (o, X, Wo, a1, Wq) <> Yw—-U(az, X, Wp, g, Wy)),

where « is seen as the quadruple («g, a1, az, ag). O

Corollary
Tarski’s theory of real closed ordered fields is interpretable in Q.
» BTPSA is interpretable in Q. Can get more than that!

Question: Can we add (suitable versions of) LJ Lisaon | e
weak Konig’s lemma and still get interpretability in Q?
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