## Weak Analysis: Mathematics

Fernando Ferreira

Universidade de Lisboa

Journées sur les Arithmétiques Faibles 33 University of Gothenburg

June 16-18, 2014



▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

## Simple consequences of recursive comprehension

A function  $f : X \mapsto Y$  is given by a set of ordered pairs. We can state  $f(x) \in Z$  in two ways:

 $x \in X \land \exists y (\langle x, y \rangle \in f \land y \in Z)$ 

 $x \in X \land \forall y (\langle x, y \rangle \in f \rightarrow y \in Z)$ 

Thus,  $\{x \in X : f(x) \in Z\}$  exists in BTFA.

Similar thing for the composition of two functions.

#### Proposition

The theory BTFA proves the  $\exists \Sigma_1^b$ -path comprehension scheme, i.e.,

$$Path(\phi_x) \to \exists X \forall x (\phi(x) \leftrightarrow x \in X),$$

where  $\phi$  is  $\exists \Sigma_1^b$ -formula.

#### Proof.

 $\phi(x)$  is equivalent to  $\forall y(y \equiv x \land y \neq x \rightarrow \neg \phi(x))$ .

(日) (日) (日) (日) (日) (日) (日)

# **Polytime arithmetic in** $\Sigma_1^b$ **-NIA**

- N₁: tally numbers (elements u such that u = 1 × u). Model of I∆₀, but one can also make definitions by bounded recursion on the tally part.
- N<sub>2</sub>: dyadic natural numbers of the form 1 w or ε, where w is a binary string (w ∈ W). Polytime arithmetic.
- D: dyadic rational numbers. Have the form (±, x, y), where x (resp. y) is ε or a binary string starting with 1 (resp. ending with 1). Dense ordered ring without extremes.

► Given 
$$n \in \mathbb{N}_1$$
,  $2^n$  is  $\langle +, 1 \underbrace{00...0}_{n \text{ zeros}}, \epsilon \rangle$ ;  $2^{-n}$  is  $\langle +, \epsilon, \underbrace{00...01}_{n-1 \text{ zeros}} \rangle$ .

D is not a field but it is always closed by divisions by tally powers of 2.
LISBOA UNIVERSIDATE

### Real numbers in BTFA

#### Definition

We say that a function  $\alpha : \mathbb{N}_1 \mapsto \mathbb{D}$  is a *real number* if  $|\alpha(n) - \alpha(m)| \le 2^{-n}$  for all  $n \le m$ . Two real numbers  $\alpha$  and  $\beta$  are said to be *equal*, and we write  $\alpha = \beta$ , if  $\forall n \in \mathbb{N}_1 |\alpha(n) - \beta(n)| \le 2^{-n+1}$ .

The real number system is an ordered field. The relations  $\alpha = \beta$ ,  $\alpha \leq \beta$ ,  $\alpha + \beta \leq \gamma$ , ... are  $\forall \Pi_1^b$ -formulas, while  $\alpha \neq \beta$ ,  $\alpha < \beta$ , ... are  $\exists \Sigma_1^b$ -formulas.

A *dyadic real number* is a triple of the form  $\langle \pm, x, X \rangle$  where  $x \in \mathbb{N}_2$  and X is an infinite path.

LISBOA

(日) (日) (日) (日) (日) (日) (日)

# **Continuous partial functions**

#### Definition

Within BTFA, a (code for a) *continuous partial function* from  $\mathbb{R}$  into  $\mathbb{R}$  is a set of quintuples  $\Phi \subseteq \mathbb{W} \times \mathbb{D} \times \mathbb{N}_1 \times \mathbb{D} \times \mathbb{N}_1$  such that:

1. if  $\langle x, n \rangle \Phi \langle y, k \rangle$  and  $\langle x, n \rangle \Phi \langle y', k' \rangle$ , then  $|y - y'| \le 2^{-k} + 2^{-k'}$ ;

- **2.** if  $\langle x, n \rangle \Phi \langle y, k \rangle$  and  $\langle x', n' \rangle < \langle x, n \rangle$ , then  $\langle x', n' \rangle \Phi \langle y, k \rangle$ ;
- **3.** if  $\langle x, n \rangle \Phi \langle y, k \rangle$  and  $\langle y, k \rangle < \langle y', k' \rangle$ , then  $\langle x, n \rangle \Phi \langle y', k' \rangle$ ;

where  $\langle x, n \rangle \Phi \langle y, k \rangle$  stands for  $\exists \Sigma_1^b$ -relation  $\exists w \langle w, x, n, y, k \rangle \in \Phi$ , and where  $\langle x', n' \rangle < \langle x, n \rangle$  means that  $|x - x'| + 2^{-n'} < 2^{-n}$ .

#### Definition

Let  $\Phi$  be a continuous partial real function of a real variable. We say that a real number  $\alpha$  is in the *domain* of  $\Phi$  if

$$\forall k \in \mathbb{N}_1 \exists n \in \mathbb{N}_1 \exists x, y \in \mathbb{D} \left( |\alpha - x| < 2^{-n} \land \langle x, n \rangle \Phi \langle y, k \rangle \right).$$

U LISBOA DE LISBOA

# **Continuous functions (continued)**

#### Definition

Let  $\Phi$  be a continuous partial real function and let  $\alpha$  be a real number in the domain of  $\Phi$ . We say that a real number  $\beta$  is the *value of*  $\alpha$ *under the function*  $\Phi$ , and write  $\Phi(\alpha) = \beta$ , if

$$\forall x, y \in \mathbb{D} \, \forall n, k \in \mathbb{N}_1 \, [\langle x, n \rangle \Phi \langle y, k \rangle \wedge |\alpha - x| < 2^{-n} \rightarrow |\beta - y| \leq 2^{-k}].$$

# Note $\Phi(\alpha) = \beta$ is a $\forall \Pi_1^b$ notion. Etc.

#### Theorem (BTFA)

Let  $\Phi$  be a continuous partial real function and let  $\alpha$  in the domain of  $\Phi$ . Then there is a dyadic real number  $\beta$  such that  $\Phi(\alpha) = \beta$ . Moreover, this real number is unique.

#### Corollary

Every real number can be put in dyadic form.

UNIVERSIDADE De lisboa

LISBOA

### Intermediate value theorem

#### Theorem (BTFA)

If  $\Phi$  is a continuous function which is total in the closed interval [0, 1] and if  $\Phi(0) < 0 < \Phi(1)$ , then there is a real number  $\alpha \in [0, 1]$  such that  $\Phi(\alpha) = 0$ .

#### Proof.

Assume that there is no dyadic rational number  $x \in [0, 1]$  such that  $\Phi(x) = 0$ . Consider  $X := \{x : x \in \mathbb{D} \cap [0, 1] \land \Phi(x) < 0\}$  (it exists!).

Define by bounded recursion along the tally part, the function  $f : \mathbb{N}_1 \to \mathbb{D} \times \mathbb{D}$  according to the clauses  $f(0) = \langle 0, 1 \rangle$  and

$$f(n+1) = \begin{cases} \langle (f_0(n) + f_1(n))/2, f_1(n) \rangle & \text{if } (f_0(n) + f_1(n))/2 \in X \\ \langle f_0(n), (f_0(n) + f_1(n))/2 \rangle & \text{otherwise} \end{cases}$$

where  $f_0$  and  $f_1$  are the first and second projections of f. These projections determine the same real  $\alpha$ , and  $\Phi(\alpha) = 0$ .

(日) (日) (日) (日) (日) (日) (日)

### **Real closed ordered fields**

The real system constitutes a real closed ordered field.

- Can define polynomials of tally degree as functions *F* : {*i* ∈ ℕ<sub>1</sub> : *i* ≤ *d*} × ℕ<sub>1</sub> → D such that, for every *i* ≤ *d*, the function *γ<sub>i</sub>* defined by *γ<sub>i</sub>(n)* = *F*(*i*, *n*) is a real number.
- ► Given P(X) = γ<sub>d</sub>X<sup>d</sup> + · · · + γ<sub>1</sub>X + γ<sub>0</sub> can define it as a continuous function.
- Generalize to series. Can introduce some transcendental functions. <u>This has not been worked out</u>.

LISBOA UNIVERSIDADE

## **The Heine-Borel theorem**

#### Definition (BTFA)

A (code for an) open set U is a set  $U \subseteq \mathbb{W} \times \mathbb{D} \times \mathbb{N}_1$ . We say that a real number  $\alpha$  is an *element* of U, and write  $\alpha \in U$ , if

$$\exists z \in \mathbb{D} \exists n \in \mathbb{N}_1 (|\alpha - z| < 2^{-n} \land \exists w \langle w, z, n \rangle \in U).$$

Suppose that *U* is an open set and that  $[0, 1] \subseteq U$ . The *Heine-Borel theorem* states the existence of  $k \in \mathbb{N}_1$  such that, for all  $\alpha \in [0, 1]$ ,

$$\exists z \in \mathbb{D}, n \in \mathbb{N}_1, w \in \mathbb{W} (z, n, w \le k \land |\alpha - z| < 2^{-n} \land \langle w, z, n \rangle \in U).$$

#### Theorem (BTFA)

The Heine/Borel theorem for [0, 1] is equivalent to  $\Pi_1^b$ -WKL.

U LISBOA UNIVERSIDADE

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

# The uniform continuity theorem

#### Definition

Let  $\Phi:[0,1]\mapsto \mathbb{R}$  be a (total) continuous function. We say that  $\Phi$  is uniformly continuous if

$$\forall k \in \mathbb{N}_1 \exists m \in \mathbb{N}_1 \forall \alpha, \beta \in [0, 1] (|\alpha - \beta| \le 2^{-m} \to |\Phi(\alpha) - \Phi(\beta)| < 2^{-k}).$$

#### Theorem (BTFA)

The principle that every (total) real valued continuous function defined on [0, 1] is uniformly continuous implies WKL and is implied by  $\Pi_1^b$ -WKL.

#### Proof.

The latter statement uses the Heine-Borel theorem. The former statement uses the following lemma:

#### Lemma (BTFA)

Let *T* be a subtree of  $\mathbb{W}$  with no infinite paths. There is a continuous (total) function defined on [0, 1] such that, for all end nodes *x* of *T*,  $\Phi(.x^*) = 2^{l(x)}$  (where l(x) is the unary length of *x*).

# The attainement of maximum

The  $\Sigma_1^b$ -IA induction principle is

$$\phi(\epsilon) \land \forall x(\phi(x) \to \phi(S(x))) \to \forall x\phi(x),$$

for  $\phi \in \Sigma_1^b$ .

#### Note

Over BTFA, the  $\Sigma_1^b$ -IA induction principle is equivalent to saying that every non-empty bounded set X of  $\mathbb{W}$  has a lexicographic maximum (minimum).

#### Theorem

*Over* BTFA +  $\Sigma_0$ -WKL, the following are equivalent:

- (a) Every (total) real valued continuous function defined on [0, 1] has a maximum.
- (b) Every (total) real valued continuous function defined on [0, 1] has a supremum.

LISBOA UNIVERSIDADE

# Integration and counting

Given  $X \subseteq \mathbb{N}_2$  a non-empty subset, let  $\Phi_X$  be the continuous function



# Integration and counting (continued)

The counting function *f* up to *b* is given simultaneously by:

$$f = \{ \langle x, n \rangle : x, n \in \mathbb{N}_2, x \le b + 1, \int_0^x \Phi_X(t) dt =_{\mathbb{R}} n_{\mathbb{R}} \}$$

 $f = \{ \langle x, n \rangle : x, n \in \mathbb{N}_2, x \le b+1, \ n-\frac{1}{2} <_{\mathbb{R}} \int_0^x \Phi_X(t) dt <_{\mathbb{R}} n_{\mathbb{R}} + \frac{1}{2} \}$ 

Get *f* by (the) recursive comprehension (available in BTFA).

How does one prove that the two above definitions coincide? Can we show that, for each  $x \le b$ ,  $\int_0^x \Phi_X(t) dt$  is equal to a (dyadic) natural number. By induction? *Prima facie*, we do have have this kind of induction!

- 1. The unbounded quantifiers can be dealt by judicious uses of bounded collection.
- 2. Σ<sup>b</sup><sub>1</sub>-IA induction is available because we can prove that every non-empty set has a minimum. Use the intermediate value theorem!

# **Counting and integration**

If we can count, then we can add:

$$\sum_{w=0}^{x} f(w) = \#\{u : \exists w \leq_{2} x \exists y <_{2} f(w) (u = \langle w, y \rangle)\}.$$

#### Definition

Let  $\Phi$  be a continuous total function on [0,1]. A *modulus of uniform continuity* (*m.u.c*) is a strictly increasing function  $h : \mathbb{N}_1 \mapsto \mathbb{N}_1$  such that

$$\forall n \in \mathbb{N}_1 \forall \alpha, \beta \in [0, 1] (|\alpha - \beta| \le 2^{-h(n)} \to |\Phi(\alpha) - \Phi(\beta)| < 2^{-n}).$$

#### Note

Over  $TCA^2 + \Sigma_0$ -WKL, if  $\Phi$  is a continuous total function on [0,1] then  $\Phi$  has a m.u.c.

LISBOA

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

UNIVERSIDADE De lisboa

# **Counting and integration (continued)**

#### Definition (TCA<sup>2</sup>)

Take  $\Phi$  a continuous total function on [0,1] with a m.u.c. *h*. The *integral of*  $\Phi$  *between 0 and 1* is defined by

$$\int_0^1 \Phi(t) dt :=_{\mathbb{R}} \lim_n S_n$$

where, for all  $n \in \mathbb{N}_1$ ,  $S_n = \sum_{w=0}^{2^{h(n)}-1} \frac{1}{2^{h(n)}} \Phi(\frac{w}{2^{h(n)}}, n)$ . Here  $\Phi(r, n)$  is a suitable approximation of  $\Phi(r)$ .

#### Note

The above definition readily extends to integration for intervals with dyadic rational points as limits.

Let  $d : \mathbb{D} \mapsto \mathbb{D}$  be:

(日) (日) (日) (日) (日) (日) (日)

### The fundamental theorem of calculus

Given  $\Phi$  a continuous total function on [0,1] with m.u.c. *h*, define  $\langle x, n \rangle \Psi \langle y, k \rangle$  as follows:

$$x, y \in \mathbb{D} \wedge n, k \in \mathbb{N}_1 \wedge \left| \int_0^{d(x)} \Phi(t) dt \right| < \frac{1}{2^k} - \frac{1}{2^{n-m-1}},$$

where  $m \in \mathbb{N}_1$  is such that  $\forall \alpha \in [0, 1] |\Phi(\alpha)| \leq 2^m$ .

► The above  $\Psi$  gives, within TCA<sup>2</sup>, the definition of the continuous real function  $\alpha \rightsquigarrow \int_0^{\alpha} \Phi(t) dt$ .

LISBOA UNIVERSIDADE

• It is easy to prove that the derivative of  $\Psi$  at  $\alpha$  is  $\Phi(\alpha)$ .

# **On continuous functions**

- Takeshi Yamazaki defined continuity via uniform approximations of piecewise linear functions. Uniform continuity is built in.
- What about defining continuity via uniform approximations of polynomials? Do we get a nice theory of integration in BTFA?
- Weierstrass' approximation theorem: every (uniformly) continuous function on [0,1] is uniformly approximated by polynomials.
- Conjecture. Over BTFA (or close enough), Weierstrass' approximation theorem is equivalent to the totality of exponentiation.

LISBOA

# Interpretability in Robinson's Q

- The theories  $I\Delta_0 + \Omega_n$  are interpretable in Robinson's Q.
- $\Omega_{n+1}$  means that the logarithmic part satisfies  $\Omega_n$ .
- The RSUV isomorphism characterizes the theory of the logarithmic part of a model (and vice-versa).
- Hence, lots of interpretability in Q. Basically, it includes any computations that take a (fixed) iterated exponential number of steps. The "fixed" is for the number of iterations.

LISBOA UNIVERSIDADE

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

• Note that  $I\Delta_0 + exp$  is <u>not</u> interpretable in Q.

# Interpretability in Robinson's Q (continued)

Theorem

The theory BTFA is interpretable in Robinson's Q.

#### Proof.

Let U(e, x, y, p, c) be a 5-ary sw.q.-formula with the universal property according to which, for every ternary sw.q.-formula  $\psi(x, y, p)$ , there is a (standard) binary string *e* such that

$$\Sigma_1^b$$
-NIA  $\vdash \forall x \forall y \forall p(\psi(x, y, p) \leftrightarrow \exists c \ U(e, x, y, p, c)).$ 

Define

$$Set(\alpha) := \forall x (\exists w U(\alpha_0, x, w_0, \alpha_1, w_1) \leftrightarrow \forall w \neg U(\alpha_2, x, w_0, \alpha_3, w_1)),$$

where  $\alpha$  is seen as the quadruple  $\langle \alpha_0, \alpha_1, \alpha_2, \alpha_3 \rangle$ .

#### Corollary

Tarski's theory of real closed ordered fields is interpretable in Q.

BTPSA is interpretable in Q. Can get more than that! <u>Question</u>: Can we add (suitable versions of) weak König's lemma and still get interpretability in Q?

### References

A. Fernandes & F. Ferreira, "Groundwork for weak analysis." **The Journal of Symbolic Logic** 67, 557-578 (2002).

A. Fernandes & F. Ferreira, "Basic applications of weak König's lemma in feasible analysis." In: *Reverse Mathematics 2001*, S. Simpson (editor), Association for Symbolic Logic / A K Peters 2005, 175-188.

F. Ferreira & Gilda Ferreira, "Counting as integration in feasible analysis." **Mathematical Logic Quarterly** 52, 315-320 (2006).

F. Ferreira & G. Ferreira, "The Riemann integral in weak systems of analysis." **Journal of Universal Computer Science** 14, 908-937 (2008).

LISBOA UNIVERSIDADE DE LISBOA

### References

T. Yamazaki, "Reverse mathematics and weak systems of 0-1 for feasible analysis." In: *Reverse Mathematics 2001*, S. Simpson (editor), Association for Symbolic Logic / A K Peters 2005, 394-401.

A. Fernandes, "The Baire category theorem over a feasible base theory." In: *Reverse Mathematics 2001*, S. Simpson (editor), Association for Symbolic Logic / A K Peters 2005, 164-174.

E. Nelson: **Predicative Arithmetic**. Mathematical Notes, Princeton University Press, 1986.

Hajek, Pudlák: **Metamathematics of First-order Arithmetic**. Perspectives in Mathematical Logic, Springer-Verlag, 1993.

F. Ferreira & G. Ferreira, "Interpretability in Robinson's O". The Bulletin of Symbolic Logic 19, 289-317 (2013).

# Thank you



◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●