The problem of a model with no collection and no exponentiation

Leszek Kołodziejczyk University of Warsaw

JAF33 Göteborg, June 2014

Dramatis personae

$I\Delta_0$:

induction for bounded formulas in language of ordered rings.

 $B\Sigma_1$: $∀x < v ⊃y$ $ψ(x, y) ⇒ ⊒w ∀x < v ⊃y < w$ $ψ(x, y)$, for $ψ$ bounded. Exp: ∀*x* ∃2 *x* . Ω_1 : $\forall x \exists \omega_1(x)$, where $\omega_1(x) = x^{\log x}$.

Basic facts—and a question

For T reasonable and Π_1 -axiomatized, $T \preceq_{\Pi_2} T + B\Sigma_1$ (Buss 1987).

On the other hand, $\Pi_2(N) \not\vdash B\Sigma_1$ (Parsons 1970). But, all proofs of this make use of exponentially large objects. (Or larger.)

Hence, a question (Wilkie-Paris 1989):

Does $I\Delta_0$ + $\neg Exp \vdash B\Sigma_1$?

Example proof of $I\Delta_0 \not\vdash B\Sigma_1$

- \triangleright Take $M \models I\Delta_0 + \text{Exp}, a \in \mathcal{M} \setminus \mathbb{N}$.
- \triangleright K₁(M) consists of $\Sigma_1(a)$ -definable elements of M.
- \triangleright K₁(M) satisfies $\forall x < a \exists \varphi < \log a \Sigma_1$ -def'n such that Sat(φ, x).
- \triangleright But the ∃ quantifier in Sat can't be bounded.

(Kirby-Paris 1978.)

Example proof of $I\Delta_0 \not\vdash B\Sigma_1$

- \triangleright Take $M \models I\Delta_0 + \text{Exp}, a \in \mathcal{M} \setminus \mathbb{N}$.
- \triangleright K₁(M) consists of $\Sigma_1(a)$ -definable elements of M.
- $\triangleright \mathcal{K}_1(\mathcal{M})$ satisfies $\forall x < a \exists \varphi < \log a \Sigma_1$ -def'n such that Sat (φ, x) .
- \triangleright But the ∃ quantifier in Sat can't be bounded.

(Kirby-Paris 1978.)

Exp is only needed to have the formula Sat. If there is a model of $I\Delta_0$ + \neg Exp with a Σ_1 universal formula, then $I\Delta_0$ + $\neg Exp \nvDash B\Sigma_1$.

Other proofs

Some other proofs have a proof-theoretic/computational character.

If $\Pi_2(N) \vdash B\Sigma_1$, then...

- \blacktriangleright Π_1 relations of a certain class have Σ_1 "almost uniformizations" (Adamowicz 1988),
- In for function *f* with elementary recursive graph, the closure of f and elementary functions under composition is also closed under bounded max (Beklemishev 1998),

but neither of these things actually happens.

Conditional proofs of $I\Delta_0$ + \neg exp $\not\vdash$ B Σ_1

We know that $I\Delta_0$ + \neg exp $\not\vdash$ B Σ_1 if...

```
Conditional proofs of I\Delta_0 + \neg exp \not\vdash B\Sigma_1
```
We know that $I\Delta_0$ + \neg exp \nvdash B Σ_1 if...

- 1. ... the polynomial-time hierarchy collapses.
	- Reason: we then have a model of $\Pi_1(\mathbb{N}) + \neg \text{Exp with a } \Sigma_1$ universal formula.

Conditional proofs of $I\Delta_0$ + \neg exp $\not\vdash$ B Σ_1

We know that $I\Delta_0$ + \neg exp \nvdash B Σ_1 if...

2. ... the size parameter in a Δ_0 truth definition for Δ_0 formulas about *a* has to be above $2^{a^{N}}$ (Paris 1980's, only published in AKP 2012).

- \triangleright Basically says that the obvious deterministic algorithm for evaluating a formula in a finite structure sometimes cannot be significantly improved even by a Σ_k procedure for $k > 0$.
- \blacktriangleright Inconsistent with collapse of PH.

```
Conditional proofs of I\Delta_0 + \neg exp \not\vdash B\Sigma_1
```

```
We know that I\Delta_0 + \neg exp \nvdash B\Sigma_1 if...
```
3. ... exists elementary recursive f with Δ_0 graph such that closure of *f* and linear-time hierarchy functions under composition is not closed under bounded max (Cordón Franco et al. 2014).

 \triangleright Condition in the spirit of Beklemishev 1998.

Conditional proofs of $I\Delta_0$ + \neg exp $\not\vdash$ B Σ_1

We know that $I\Delta_0$ + \neg exp \nvdash B Σ_1 if...

4. ... there is $M \models I\Delta_0$ + \neg exp with cofinal Σ_1 -definable elements and Σ_1 truth definition for Σ_1 sentences (AKP 2012).

- \triangleright Proof by simple compactness argument and Kirby-Paris.
- Intriguing, because...

Truth definitions for sentences

Theorem (AKP 2012)

There is $M \models I\Delta_0 + \neg Exp$ *with cofinal* Σ_1 *definable elements and a* Σ_2 *truth definition for* Σ_2 *sentences.*

Truth definitions for sentences

```
Theorem (AKP 2012)
```
There is $\mathcal{M} \models I\Delta_0 + \neg \text{Exp with cofinal } \Sigma_1$ *definable elements and a* Σ_2 *truth definition for* Σ_2 *sentences.*

Proof.

- ightharpoonup **D** build theory T by deciding for each Σ_1 sentence $\varphi_0, \varphi_1, \ldots$ whether it is true or false,
- $\triangleright \varphi_0$ is true (according to T) and inconsistent with Exp,
- $\blacktriangleright \neg \varphi_{n+1}$ is true unless inconsistent with previous choices.
- $\triangleright \Sigma_1$ sentence is equivalent in T to an "inconsistency statement" (bool. comb. of Σ_1 sentences with simple bounded parts),
- in suitable model, this gives Σ_2 truth definition for Σ_2 sentences.

So...

If we can show $I\Delta_0$ + \neg exp $\not\vdash$ B Σ_1 in so many different cases, why can't we prove it outright?

What case is left out?

 $S_{\Omega_{\ldots}}$

If we can show $I\Delta_0$ + \neg exp $\not\vdash$ B Σ_1 in so many different cases, why can't we prove it outright?

What case is left out?

Both PH \downarrow and Paris' condition imply something like: even if $m \gg \ell$, sometimes Σ_m computations are no faster than Σ_ℓ computations.

So the difficult case seems to be if we can always decrease time at the cost of adding more quantifier alternations.

Aha!

- \triangleright Known situations like "more of a weaker resource can be simulated by less of a stronger resource" seem to have something do to with end-extensions (Ferreira 1996, Zambella 1997).
- End-extensions obviously have something to do with $B\Sigma_1$: a model of I Δ_0 with an end-extension always satisfies B Σ_1 .

A theorem about $\neg \Omega_1$

Reminder:

- \triangleright Δ_0 formulas \leftrightarrow linear-time hierarchy (LinH),
- bounded formulas with $\omega_1 \leftrightarrow \omega_2$ polynomial-time hierarchy (PH).
- \blacktriangleright "PH = LinH?" is open, and probably very hard.

A theorem about $\neg \Omega_1$

Reminder:

- $\triangleright \Delta_0$ formulas \leftrightarrow linear-time hierarchy (LinH),
- bounded formulas with $\omega_1 \leftrightarrow \omega_2$ polynomial-time hierarchy (PH).
- \blacktriangleright "PH = LinH?" is open, and probably very hard.

Theorem *If* $PH = LinH$, then $\Pi_1(\mathbb{N}) + \neg \Omega_1 \vdash B\Sigma_1$.

A theorem about $\neg \Omega_1$ (cont'd)

```
Theorem
If PH = LinH, then \Pi_1(N) + \neg \Omega_1 \vdash B\Sigma_1.
```
Proof.

- \triangleright Let $\mathcal{M} \models \Pi_1(\mathbb{N}) + \neg \Omega_1$, $\mathcal{M} \preccurlyeq_{\Delta_0} \mathcal{N} \models \text{Th}(\mathbb{N})$.
- In Let $K =$ closure of M in N under Skolem functions for PH properties.
- Always, $M \subseteq \mathcal{K} \models \Pi_1(\mathbb{N}) + \Omega_1$.
- \triangleright But if PH = LinH, then K end-extends M!

A version about $I\Delta_0$

Theorem

Assume there is a translation $\psi \mapsto \psi^\text{lin}$ of bounded f'las with ω_1 *to* $\Delta_0 f'$ *las such that* $I\Delta_0 + \Omega_1 + \{ \forall x (\psi(x) \Leftrightarrow \psi^{\text{lin}}(x)) : \psi \text{ bounded} \}$ *is* Π_1 -conservative over $I\Delta_0$. *Then* $I\Delta_0$ + $\neg \Omega_1$ + $B\Sigma_1$.

Remark:

The assumption is a reasonable way of saying $I\Delta_0$ \vdash PH = LinH.

Question:

Does this follow from "I $\Delta_0 + \Omega_1$ is Π_1 -conservative over $I\Delta_0$ "?

```
What about ¬Exp?
```
 \blacktriangleright It would be nice to do the same with PH replaced by $EH = \bigcup_{k \in \mathbb{N}} \Sigma_k$ -TIME $(2^{O(n)})$.

```
What about \neg Exp?
```
- \triangleright It would be nice to do the same with PH replaced by $EH = \bigcup_{k \in \mathbb{N}} \Sigma_k$ -TIME $(2^{O(n)})$.
- \blacktriangleright However, EH \neq LinH is known!

What about ¬Exp?

- It would be nice to do the same with PH replaced by $EH = \bigcup_{k \in \mathbb{N}} \Sigma_k$ -TIME $(2^{O(n)})$.
- \blacktriangleright However, EH \neq LinH is known!
- ► Same remains true for $\bigcup_{k \in \mathbb{N}} \Sigma_k$ -TIME(*f*) where *f* is *fractional-exponential* (finite iteration of f dominates 2^x).

What about ¬Exp?

- It would be nice to do the same with PH replaced by $EH = \bigcup_{k \in \mathbb{N}} \Sigma_k$ -TIME $(2^{O(n)})$.
- \blacktriangleright However, EH \neq LinH is known!
- ► Same remains true for $\bigcup_{k \in \mathbb{N}} \Sigma_k$ -TIME(*f*) where *f* is *fractional-exponential* (finite iteration of f dominates 2^x).
- \triangleright But refuting the following seems beyond reach: "for every *k* there is fractional-exponential *f* such that Σ_k -TIME (f) ⊂ LinH".

A theorem about $\neg Exp$

Theorem

Assume that for every k there is fractional-exponential f such that $\bigcup_{k \in \mathbb{N}} \Sigma_k$ -TIME $(f^{O(1)}) \subseteq \text{LinH}$ *. Then* $\Pi_1(\mathbb{N}) + \neg \text{Exp} \vdash B\Sigma_1$ *.*

- In The proof is similar to the one for $\neg \Omega_1$, but the end-extensions are now to models of finite fragments of $I\Delta_0 + \Omega_1$ (Buss' T_2^k 's).
- ► There is a version about $I\Delta_0$ + \neg exp. It won't fit on the remainder of this slide.

Relativizations

Can we use the previous results to show that any proof of $I\Delta_0$ + \neg Exp \nvdash B Σ_1 has to be "non-relativizing"?

How would we even express that?

Relativizations

Can we use the previous results to show that any proof of $I\Delta_0$ + $\neg Exp \nvDash B\Sigma_1$ has to be "non-relativizing"?

How would we even express that?

Conjecture

Let α *be a new unary relation symbol. There exists a consistent recursively axiomatized set of* $\Pi_1(\alpha)$ *sentences* $T(\alpha)$ *such that* $T(\alpha) + \neg Exp \vdash B\Sigma_1(\alpha)$.

A relativized result

Theorem

Let α *be a new unary relation symbol. For every finite fragment* $B(\alpha)$ *of* $B\Sigma_1(\alpha)$ *there exists a consistent recursively axiomatized set of* $\Pi_1(\alpha)$ *sentences* $T_B(\alpha)$ *such that* $T_B(\alpha) + \neg Exp \vdash B(\alpha)$ *.*

- \blacktriangleright This is not true without $\neg Exp$. E.g. Kirby-Paris argument relativizes.
- ► Proof uses variant of "Håstad's second switching lemma" and known construction of oracle for $E \subseteq LinH$ to show that every finite level of EH can be put inside LinH relative to an oracle. (Oracle has to depend on level since $EH \neq LinH$ relativizes.)