The problem of a model with no collection and no exponentiation

Leszek Kołodziejczyk University of Warsaw

JAF33 Göteborg, June 2014

Dramatis personae

$I\Delta_0$:

induction for bounded formulas in language of ordered rings.

$$\begin{split} & \mathsf{B}\Sigma_1: \\ & \forall x < v \, \exists y \, \psi(x, y) \Rightarrow \exists w \, \forall x < v \, \exists y < w \, \psi(x, y), \, \text{for } \psi \text{ bounded.} \\ & \mathsf{Exp:} \\ & \forall x \, \exists 2^x. \\ & \Omega_1: \\ & \forall x \, \exists \omega_1(x), \, \text{where } \omega_1(x) = x^{\log x}. \end{split}$$

Basic facts—and a question

For T reasonable and Π_1 -axiomatized, T \leq_{Π_2} T + B Σ_1 (Buss 1987).

On the other hand, $\Pi_2(\mathbb{N}) \not\vdash B\Sigma_1$ (Parsons 1970). But, all proofs of this make use of exponentially large objects. (Or larger.)

Hence, a question (Wilkie-Paris 1989):

Does $I\Delta_0 + \neg Exp \vdash B\Sigma_1$?

Example proof of $I\Delta_0 \not\vdash B\Sigma_1$

- Take $\mathcal{M} \models I\Delta_0 + Exp, a \in \mathcal{M} \setminus \mathbb{N}$.
- $\mathcal{K}_1(\mathcal{M})$ consists of $\Sigma_1(a)$ -definable elements of \mathcal{M} .
- ► $\mathcal{K}_1(\mathcal{M})$ satisfies $\forall x < a \exists \varphi < \log a \Sigma_1$ -def'n such that $\operatorname{Sat}(\varphi, x)$.
- But the \exists quantifier in Sat can't be bounded.

(Kirby-Paris 1978.)

Example proof of $I\Delta_0 \not\vdash B\Sigma_1$

- Take $\mathcal{M} \models I\Delta_0 + Exp, a \in \mathcal{M} \setminus \mathbb{N}$.
- $\mathcal{K}_1(\mathcal{M})$ consists of $\Sigma_1(a)$ -definable elements of \mathcal{M} .
- ► $\mathcal{K}_1(\mathcal{M})$ satisfies $\forall x < a \exists \varphi < \log a \Sigma_1$ -def'n such that $\operatorname{Sat}(\varphi, x)$.
- But the \exists quantifier in Sat can't be bounded.

(Kirby-Paris 1978.)

Exp is only needed to have the formula Sat. If there is a model of $I\Delta_0 + \neg Exp$ with a Σ_1 universal formula, then $I\Delta_0 + \neg Exp \not\vdash B\Sigma_1$.

Other proofs

Some other proofs have a proof-theoretic/computational character.

If $\Pi_2(\mathbb{N}) \vdash B\Sigma_1$, then...

- Π₁ relations of a certain class have Σ₁ "almost uniformizations" (Adamowicz 1988),
- for function f with elementary recursive graph, the closure of f and elementary functions under composition is also closed under bounded max (Beklemishev 1998),

but neither of these things actually happens.

Conditional proofs of $I\Delta_0 + \neg \exp \not\vdash B\Sigma_1$

We know that $I\Delta_0 + \neg \exp \not\vdash B\Sigma_1$ if...

```
Conditional proofs of I\Delta_0 + \neg \exp \not\vdash B\Sigma_1
```

We know that $I\Delta_0 + \neg \exp \not\vdash B\Sigma_1$ if...

1. ... the polynomial-time hierarchy collapses.

► Reason: we then have a model of Π₁(ℕ) + ¬Exp with a Σ₁ universal formula.

Conditional proofs of $I\Delta_0 + \neg \exp \not\vdash B\Sigma_1$

We know that $I\Delta_0 + \neg \exp \not\vdash B\Sigma_1$ if...

2. ... the size parameter in a Δ_0 truth definition for Δ_0 formulas about *a* has to be above $2^{a^{\mathbb{N}}}$ (Paris 1980's, only published in AKP 2012).

- ► Basically says that the obvious deterministic algorithm for evaluating a formula in a finite structure sometimes cannot be significantly improved even by a Σ_k procedure for k > 0.
- Inconsistent with collapse of PH.

```
Conditional proofs of I\Delta_0 + \neg \exp \not\vdash B\Sigma_1
```

```
We know that I\Delta_0 + \neg \exp \not\vdash B\Sigma_1 if...
```

3. ... exists elementary recursive f with Δ_0 graph such that closure of f and linear-time hierarchy functions under composition is not closed under bounded max (Cordón Franco et al. 2014).

• Condition in the spirit of Beklemishev 1998.

Conditional proofs of $I\Delta_0 + \neg \exp \not\vdash B\Sigma_1$

We know that $I\Delta_0 + \neg \exp \not\vdash B\Sigma_1$ if...

4. ... there is $\mathcal{M} \models I\Delta_0 + \neg exp$ with cofinal Σ_1 -definable elements and Σ_1 truth definition for Σ_1 sentences (AKP 2012).

- Proof by simple compactness argument and Kirby-Paris.
- Intriguing, because...

Truth definitions for sentences

Theorem (AKP 2012)

There is $\mathcal{M} \models I\Delta_0 + \neg Exp$ *with cofinal* Σ_1 *definable elements and a* Σ_2 *truth definition for* Σ_2 *sentences.*

Truth definitions for sentences

```
Theorem (AKP 2012)
```

There is $\mathcal{M} \models I\Delta_0 + \neg Exp$ *with cofinal* Σ_1 *definable elements and a* Σ_2 *truth definition for* Σ_2 *sentences.*

Proof.

- build theory T by deciding for each Σ₁ sentence φ₀, φ₁,... whether it is true or false,
- φ_0 is true (according to T) and inconsistent with Exp,
- $\neg \varphi_{n+1}$ is true unless inconsistent with previous choices.
- Σ₁ sentence is equivalent in T to an "inconsistency statement" (bool. comb. of Σ₁ sentences with simple bounded parts),
- in suitable model, this gives Σ_2 truth definition for Σ_2 sentences.

So...

If we can show $I\Delta_0 + \neg exp \not\vdash B\Sigma_1$ in so many different cases, why can't we prove it outright?

What case is left out?

So...

If we can show $I\Delta_0 + \neg \exp \not\vdash B\Sigma_1$ in so many different cases, why can't we prove it outright?

What case is left out?

Both PH \downarrow and Paris' condition imply something like: even if $m \gg \ell$, sometimes Σ_m computations are no faster than Σ_ℓ computations.

So the difficult case seems to be if we can always decrease time at the cost of adding more quantifier alternations.

Aha!

- Known situations like "more of a weaker resource can be simulated by less of a stronger resource" seem to have something do to with end-extensions (Ferreira 1996, Zambella 1997).
- End-extensions obviously have something to do with BΣ₁: a model of IΔ₀ with an end-extension always satisfies BΣ₁.

A theorem about $\neg \Omega_1$

Reminder:

- Δ_0 formulas $\leftrightarrow \rightarrow$ linear-time hierarchy (LinH),
- ▶ bounded formulas with $\omega_1 \iff$ polynomial-time hierarchy (PH).
- "PH = LinH?" is open, and probably very hard.

A theorem about $\neg \Omega_1$

Reminder:

- Δ_0 formulas $\leftrightarrow \rightarrow$ linear-time hierarchy (LinH),
- ▶ bounded formulas with $\omega_1 \iff$ polynomial-time hierarchy (PH).
- "PH = LinH?" is open, and probably very hard.

Theorem If PH = LinH, then $\Pi_1(\mathbb{N}) + \neg \Omega_1 \vdash B\Sigma_1$.

A theorem about $\neg \Omega_1$ (cont'd)

```
Theorem
If PH = LinH, then \Pi_1(\mathbb{N}) + \neg \Omega_1 \vdash B\Sigma_1.
```

Proof.

- Let $\mathcal{M} \models \Pi_1(\mathbb{N}) + \neg \Omega_1, \mathcal{M} \preccurlyeq_{\Delta_0} \mathcal{N} \models \operatorname{Th}(\mathbb{N}).$
- Let \mathcal{K} = closure of \mathcal{M} in \mathcal{N} under Skolem functions for PH properties.
- Always, $\mathcal{M} \subseteq \mathcal{K} \models \Pi_1(\mathbb{N}) + \Omega_1$.
- But if PH = LinH, then \mathcal{K} end-extends \mathcal{M} !

A version about $I\Delta_0$

Theorem

Assume there is a translation $\psi \mapsto \psi^{\text{lin}}$ of bounded f'las with ω_1 to Δ_0 f'las such that $I\Delta_0 + \Omega_1 + \{\forall x (\psi(x) \Leftrightarrow \psi^{\text{lin}}(x)) : \psi \text{ bounded}\}$ is Π_1 -conservative over $I\Delta_0$. Then $I\Delta_0 + \neg \Omega_1 \vdash B\Sigma_1$.

Remark:

The assumption is a reasonable way of saying $I\Delta_0 \vdash PH = LinH$.

Question:

Does this follow from "I $\Delta_0 + \Omega_1$ is Π_1 -conservative over $I\Delta_0$ "?

```
What about \neg Exp?
```

► It would be nice to do the same with PH replaced by $EH = \bigcup_{k \in \mathbb{N}} \Sigma_k$ -TIME $(2^{O(n)})$.

```
What about \neg Exp?
```

- ► It would be nice to do the same with PH replaced by $EH = \bigcup_{k \in \mathbb{N}} \Sigma_k$ -TIME $(2^{O(n)})$.
- However, $EH \neq LinH$ is known!

What about $\neg Exp$?

- ► It would be nice to do the same with PH replaced by $EH = \bigcup_{k \in \mathbb{N}} \Sigma_k$ -TIME $(2^{O(n)})$.
- However, $EH \neq LinH$ is known!
- Same remains true for U_{k∈ℕ} Σ_k-TIME(f) where f is fractional-exponential (finite iteration of f dominates 2^x).

What about $\neg Exp$?

- ► It would be nice to do the same with PH replaced by $EH = \bigcup_{k \in \mathbb{N}} \Sigma_k$ -TIME $(2^{O(n)})$.
- However, $EH \neq LinH$ is known!
- Same remains true for U_{k∈ℕ} Σ_k-TIME(f) where f is fractional-exponential (finite iteration of f dominates 2^x).
- But refuting the following seems beyond reach: "for every k there is fractional-exponential f such that Σ_k-TIME(f) ⊆ LinH".

A theorem about ¬Exp

Theorem

Assume that for every k there is fractional-exponential f such that $\bigcup_{k \in \mathbb{N}} \Sigma_k$ -TIME $(f^{O(1)}) \subseteq$ LinH. Then $\Pi_1(\mathbb{N}) + \neg \text{Exp} \vdash B\Sigma_1$.

- The proof is similar to the one for ¬Ω₁, but the end-extensions are now to models of finite fragments of IΔ₀ + Ω₁ (Buss' T^k₂'s).
- ► There is a version about I∆₀ + ¬ exp. It won't fit on the remainder of this slide.

Relativizations

Can we use the previous results to show that any proof of $I\Delta_0 + \neg Exp \not\vdash B\Sigma_1$ has to be "non-relativizing"?

How would we even express that?

Relativizations

Can we use the previous results to show that any proof of $I\Delta_0 + \neg Exp \not\vdash B\Sigma_1$ has to be "non-relativizing"?

How would we even express that?

Conjecture

Let α be a new unary relation symbol. There exists a consistent recursively axiomatized set of $\Pi_1(\alpha)$ sentences $T(\alpha)$ such that $T(\alpha) + \neg Exp \vdash B\Sigma_1(\alpha)$.

A relativized result

Theorem

Let α be a new unary relation symbol. For every finite fragment $B(\alpha)$ of $B\Sigma_1(\alpha)$ there exists a consistent recursively axiomatized set of $\Pi_1(\alpha)$ sentences $T_B(\alpha)$ such that $T_B(\alpha) + \neg Exp \vdash B(\alpha)$.

- This is not true without ¬Exp.
 E.g. Kirby-Paris argument relativizes.
- ► Proof uses variant of "Håstad's second switching lemma" and known construction of oracle for E ⊆ LinH to show that every finite level of EH can be put inside LinH relative to an oracle. (Oracle has to depend on level since EH ≠ LinH relativizes.)