LOCAL INDUCTION AXIOMS VS LOCAL INDUCTION RULES

A. Cordón-Franco and F.F. Lara-Martín

Dpto. Ciencias de la Computación e Inteligencia Artificial Facultad de Matemáticas. Universidad de Sevilla C/ Tarfia, s/n, 41012 Sevilla (Spain) {acordon,fflara}@us.es

April 30, 2014

Abstract

Mints, Adamowicz–Bigorajska, Kaye and Ratajczyk (independently) proved that if a Π_2 -sentence θ is derived (over the base theory $I\Delta_0$) using m instances of parameter–free Σ_1 -induction axiom scheme then θ can also be derived using at most m (nested) applications of Σ_1 -induction rule. A similar result holds when Σ_1 -induction scheme is replaced with a *local* version of the induction principle, namely, the following scheme $I(\Sigma_1^-, \mathcal{K}_1)$:

 $\varphi(0) \land \forall x (\varphi(x) \to \varphi(x+1)) \to \forall x \in \mathcal{K}_1 \varphi(x)$

where $\varphi(x)$ is a parameter-free Σ_1 formula and $\forall x \in \mathcal{K}_1 \varphi(x)$ expresses that every Σ_1 definable element satisfies $\varphi(x)$. In this talk, working over $I\Delta_0$, we obtain new conservation results relating the number of instances of $I(\Sigma_1^-, \mathcal{K}_1)$ needed to derive a sentence θ , and the number and depth of *nested* applications of several induction rules needed in a derivation of θ . Several formulations of induction rules are considered in correspondence with the quantifier complexity of the sentence θ (Π_2 , $\mathcal{B}(\Sigma_1)$ or Π_1). Since $I(\Sigma_1^-, \mathcal{K}_1)$ and the parameter-free Π_1 -induction scheme, $I\Pi_1^-$, are equivalent over $I\Delta_0$, we shall derive as corollaries some new conservation results for this last scheme.

Research supported by grant MTM2011–26840, Ministerio de Ciencia e Innovación, Spain.