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Classical Induction Axioms

I Peano Arithmetic is axiomatized over a basic theory
(say, Robinson’s Q theory) by the induction scheme:

Iϕ,x : ϕ(0, v)∧∀x (ϕ(x , v)→ ϕ(x+1, v))→ ∀x ϕ(x , v)

I Classical fragments:

IΣn = Q + {Iϕ,x : ϕ(x , v) ∈ Σn}
IΠn = Q + {Iϕ,x : ϕ(x , v) ∈ Πn}

I Well known fact: IΣn ≡ IΠn.
I This equivalence fails for Parameter free schemes.

I We write ϕ(x) ∈ Σ−n if ϕ(x) ∈ Σn and x is the only free
variable of ϕ(x).

I IΣ−n = Q + {Iϕ,x : ϕ(x) ∈ Σ−n }.
I IΠ−n is defined accordingly.

I (n ≥ 1) IΣ−n is a proper extension of IΠ−n .
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Induction Rules

Let Γ = Σn (Πn or B(Σn)), and let T be a theory, I∆0 ⊆ T .

I Γ–IR is the inference rule given by

ϕ(0, v) ∧ ∀x (ϕ(x , v)→ ϕ(x + 1, v))

∀x ϕ(x , v)
, ϕ(x , v) ∈ Γ.

I Γ–IR0 denotes the inference rule

∀x (ϕ(x , v)→ ϕ(x + 1, v))

ϕ(0, v)→ ∀x ϕ(x , v)
, ϕ(x , v) ∈ Γ.

I If R is an inference rule then
I [T ,R] denotes the closure of T under first order logic

and unnested applications of R.
I T + R denotes the closure of T under first order logic

and (nested) applications of R.
I [T ,R]0 = T , [T ,R]m+1 = [[T ,R]m,R].

I Γ−–IR (resp. Γ−–IR0) denotes the parameter free
version of Γ–IR (resp. Γ–IR0).
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Some basic results

I Some basic relations:

[T ,Σ1–IR] ≡ [T ,Σ1–IR0] ≡ [T ,Σ−1 –IR] ≡ [T ,Π1–IR0].

I (Parsons) IΣ1 is Π2–conservative over I∆0 + Σ1–IR.

I (Adamowicz–Bigorajska; Mints; Ratajczyk; Kaye) For
every m ≥ 1, if ϕ1(x), . . . , ϕm(x) ∈ Σ−1 and θ ∈ Π2

I∆0 + Iϕ1 + · · ·+ Iϕm ` θ ⇒ [I∆0,Σ1–IR]m ` θ

I There is no nontrivial conservation between IΣ1 and
I∆0 + Π1–IR.

I [I∆0,Π1–IR] ⊂ [I∆0,Π
−
1 –IR0] ⊂ [I∆0,Π1–IR0].
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Reflection principles

I We work over EA = I∆0 + exp.
I For each theory T , recursively axiomatizable, we

consider formulas
I PrfT (y , x) expresing “y is (codes) a proof of x in T”
I ProvT (x) ≡ ∃y PrfT (y , x)

I Local Reflection for T is the following scheme, Rfn(T ),

ProvT (pϕq)→ ϕ

for each sentence ϕ.

I Partial Local Reflection, RfnΓ(T ) is given by

ProvT (pϕq)→ ϕ

for every ϕ ∈ Γ ∩ Sent. Here Γ = Σn, Πn or B(Σn)
(n ≥ 1).
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Conservation for Local Reflection

Theorem. (Beklemishev)
Let Γ = Σn or Πn with n ≥ 2 or Γ = B(Σk), with k ≥ 1,
then

I T + Rfn(T ) is Γ–conservative over T + RfnΓ(T ).

RfnΣ2 RfnΣ3
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A stronger conservation result

Notation: If Φ is a set of sentences and m ≥ 1, we
write

T + Φ `m θ

to express that θ is derivable using axioms form T and
at most m sentences in Φ.

Theorem. (Beklemishev)
Let Γ = Σn or Πn with n ≥ 2 or Γ = B(Σk), with
k ≥ 1, then for every m ≥ 1,

I For all θ ∈ Γ ∩ Sent,

If T + Rfn(T ) `m θ then T + RfnΓ(T ) `m θ

I Let T0 = T and Tj+1 = Tj + Con(Tj), then, for every
θ ∈ Π1 ∩ Sent

If T + Rfn(T ) `m θ then Tm ` θ
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Some results á la Kreisel–Lévy

I (Kreisel–Lévy) PA ≡ EA + RFN(EA).

I (Leivant-Ono) For (n ≥ 1)

IΣn ≡ EA + RFNΣn+1(EA)

I (Beklemishev)
I EA+ + RfnΣ2 (EA) ≡ EA+ + IΠ−1 .
I EA+ + Π1–IR ≡ Tω (iterated consistency).

Proposition (Visser, CFL)

1. EA + RfnΣ2(EA) ≡ EA + IΠ−1 .

2. EA + RfnΣ1(EA) ≡ [EA,Π−1 –IR0].

3. EA + Π1–IR ≡ Tω (iterated consistency).
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Transfering the results to Π1–induction

Let θ be a sentence.

I Assume EA + RfnΣ2(EA) `m θ. Then

θ ∈ Π2 EA + RfnΠ2(EA) `m θ

θ ∈ B(Σ1) EA + RfnB(Σ1)(EA) `m θ

θ ∈ Π1 EAm ` θ

I Assume EA+ + IΠ−1 `m θ. Then

θ ∈ Π2 EA+ + ? `m θ

θ ∈ B(Σ1) EA+ + ? `m θ

θ ∈ Π1 [EA+,Π1–IR]m ` θ (Beklemishev)
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Questions

Let T be an extension of I∆0. Then

I Can we isolate induction principles P1 and P2 such that
if T + IΠ−1 `m θ, then

θ ∈ Π2 T + P1 `m θ

θ ∈ B(Σ1) T + P2 `m θ

I Can we prove that for each θ ∈ Π1 ∩ Sent, if
T + IΠ−1 `m θ, then

[T ,Π1–IR]m ` θ ?
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Local induction

I We denote by I (Γ,Kn) the following induction scheme

ϕ(0)∧∀x (ϕ(x)→ ϕ(x+1))→ (Uδ → ∀x(δ(x)→ ϕ(x)))

where ϕ(x) ∈ Γ, δ(x) ∈ Σ−n and Uδ is the sentence

∀x1 ∀x2 (δ(x1) ∧ δ(x2)→ x1 = x2)

I (Γ,Kn)–IR denotes the following inference rule:

ϕ(0) ∧ ∀x (ϕ(x)→ ϕ(x + 1))

Uδ → ∀x(δ(x)→ ϕ(x))

where ϕ(x) ∈ Γ and δ(x) ∈ Σ−n .

I I (Γ−,Kn) and (Γ−,Kn)–IR denote the parameter free
versions

I The rule (Γ−,Kn)–IR0 is defined in a similar way.
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Connection with parameter free Π1–induction

I Over I∆0, IΠ−1 ≡ I (Σ−1 ,K1)
I The equivalence is one-to-one: one instance of the first

scheme suffices to derive a given instance of the second
one (and viceversa).

I For every theory T extending I∆0,

[T , (Σ−1 ,K1)–IR0] ≡ [T ,Π−1 –IR0]

I It is again a “one–to–one equivalence”.
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The main result

Let T be I∆0 + ∀x∃yϕ(x , y), where ϕ(x , y) ∈ ∆0 and I∆0

proves that ϕ(x , y) defines a nondecreasing function. Let
m ≥ 1 and let θ be a sentence.

I Assume T + I (Σ−1 ,K1) `m θ. Then

θ ∈ Π2 [T , (Σ1,K1)–IR] `m θ

θ ∈ B(Σ1) [T , (B(Σ1)−,K1)–IR] `m θ

I If θ ∈ B(Σ1) and T + IΠ−1 `m θ, then there exist
sentences π1, . . . , πr ∈ Π1 and σ1, . . . , σr ∈ Σ1 such
that `

∨r
j=1(σj ∧ πj) and for each j = 1, . . . , r ,

[T + σj ∧ πj ,Π
−
1 –IR0] `m θ

I If in addition θ ∈ Π1, then

[T + σj ∧ πj ,Π1–IR]m ` θ



Local Induction
axioms vs rules

Cordón–Franco,
Lara–Mart́ın

Introduction

Classical induction
axioms and rules

Local Reflection

The main result

Local Induction

Concluding
remarks

Some ideas from the proof

I Two key points:
I Adamowicz–Bigorajska–Kaye–Mints–Ratajczyk’s

Theorem has a local version.
I A local version of the equivalence between applications

of Σ1–IR and iteration holds.

I For every m ≥ 1 and θ ∈ Π2

If T + I (Σ−1 ,K1) `m θ then [T , (Σ1,K1)–IR]m ` θ

I (Local iteration theorem) The following theories are
equivalent:

I T + (Σ1,K1)–IR.
I [T , (Σ1,K1)–IR].
I T + ∀u ∈ K1 ∀x ∃y (f u(x) = y).

(where f (x) = (x + 1)2 + (µx)ϕ(x , y)).
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Parameter free Π2–induction

In the case n = 2, we have:

I IΠ−2 ≡ I (Σ−2 ,K2).

I I (Σ2,K2) is Π3–conservative over IΣ−1 + (Σ2,K2)–IR.

I IΣ1 extends IΣ−1 + (Σ2,K2)–IR.
I Reduction:

IΣ−1 + (Σ2,K2)–IR ≡ IΣ−1 + (I∆0 + (Σ2,K2)–IR).
I A refinement of the (proof of) Local Iteration Theorem

shows that IΣ1 extends I∆0 + (Σ2,K2)–IR.
I It follows that IΠ−2 is Π3–conservative over IΣ1.

I Question: Let θ ∈ Π3 ∩ Sent such that
IΣ−1 + I (Σ−2 ,K2) `m θ.

I Does [IΣ−1 , (Σ2,K2)–IR] `m θ hold?

I Assume that I∆0 + IΠ−2 `m θ with θ ∈ B(Σ2) ∩ Sent or
θ ∈ Π2 ∩ Sent.

What can we say in these cases?
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