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Classical Induction Axioms

» Peano Arithmetic is axiomatized over a basic theory
(say, Robinson's @ theory) by the induction scheme:

lox

©(0, V)AVX (p(x, v) — p(x+1,v)) — Vxo(x, v)

» Classical fragments:

I, = Q+ {lox: o(x,v) € X}
My =Q+{lyx: w(x,v)eN,}

» Well known fact: 1X, = IT1,.

» This equivalence fails for Parameter free schemes.
» We write ¢(x) € X if ¢(x) € X, and x is the only free

variable of ¢(x).

> X

= Q+{lpx: p(x) e X}

» [T, is defined accordingly.

» (n>1)

IX,, is a proper extension of /1.
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Induction Rules R

Cordén—Franco,

Let ' =%, (M, or B(X,)), and let T be a theory, /Ay C T. Lara-Martin

» ['-IR is the inference rule given by

Classical induction
axioms and rules

©(0, v) AVx (;o)(();(\;)) \; plx +1, V))7 o(x,v) €T.

» I'-IRp denotes the inference rule

Vx (o(x,v) — o(x + 1,v))

T.
o(0.v) = Wxplay)  PvIE

» If R is an inference rule then
» [T, R] denotes the closure of T under first order logic
and unnested applications of R.
» T + R denotes the closure of T under first order logic
and (nested) applications of R.
> [Tv R]O =T, [Tv R]m+1 = [[Ta R]ma R]'
» I'"—IR (resp. I'"—IRp) denotes the parameter free
version of I'-IR (resp. I'-IRp).



Some basic results

» Some basic relations:

[T,S1-IR] = [T, £1-IRo] = [T, Z7-IR] = [T, M1—IRy)].

» (Parsons) /X is My—conservative over [Ag + X1—IR.
» (Adamowicz—Bigorajska; Mints; Ratajczyk; Kaye) For
every m > 1, if p1(x),...,¢om(x) € £] and § € I,

INg+ lpy + -+ 1y b6 = [IDg,E1=IR]m F 6

» There is no nontrivial conservation between /21 and
IAO =+ |_|1—|R.
> [ Ao, Mi=IR] C [/ Ao, My =IRg] C [IAg, M1~IRo].

Local Induction
axioms vs rules

Cordén—Franco,
Lara—Martin

Classical induction
axioms and rules



Reflection principles

» We work over EA = [Ag + exp.

» For each theory T, recursively axiomatizable, we
consider formulas

» Prfr(y,x) expresing “y is (codes) a proof of x in T"
» Provy(x) = 3y Prfr(y, x)

» Local Reflection for T is the following scheme, Rfn(T),
Provr(Te™) — ¢

for each sentence .
» Partial Local Reflection, Rfnp(T) is given by

Provr(T¢) — ¢

for every o € I'N Sent. Here I' = X, M, or B(X,)
(n>1).
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Local Induction

Conservation for Local Reflection avioms vs rules
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Theorem. (Beklemishev) Lara-Martin
Let T'=%, or M, with n > 2 or T' = B(Xg), with k > 1,
then

Local Reflection

» T + Rfn(T) is I'—conservative over T + Rfnp(T).
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Notation: If ® is a set of sentences and m > 1, we Lara-Martin

write
T+oFH,0

Local Reflection

to express that 6 is derivable using axioms form T and
at most m sentences in ®.

Theorem. (Beklemishev)
Let ' =%, or M, with n > 2 or ' = B(X), with
k > 1, then for every m > 1,

» For all 6 € T' N Sent,
f T+Rin(T)Fn6 then T +Rfnp(T)kFp,0

» Let To =T and Tj11 = T; + Con(T;), then, for every
0 € My N Sent

If T+Rfn(T)Fm0 then Tnhk 0
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> (Kreisel-Lévy) PA = EA + RFN(EA). Lara-Martin
» (Leivant-Ono) For (n > 1)

|Zn = EA + RFNZ EA) Local Reflection

n+1(

» (Beklemishev)
» EA' + Rfng,(EA) = EAT +1M} .
» EAT +1;-IR = T, (iterated consistency).

Proposition (Visser, CFL)

1. EA + Rfng, (EA) = EA + 17
2. EA+ Rfng, (EA) = [EA, N7 —IRy)].
3. EA+ M1-IR= T, (iterated consistency).
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Let 6 be a sentence. Lara-Martin

» Assume EA + Rfny,(EA) Fp, 6. Then

Local Reflection

0, EA + an|'|2(EA) Fnm 0
0 e B(Zl) EA + anB(Zl)(EA) o, 6
0 el EA, 0

> Assume EAT + INy =, 0. Then

6 €Ny EAT + 2k, 0

0 € B(T1) EAT + 2 0

0 el [EAT, M1-IR]» 0 (Beklemishev)
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Let T be an extension of /Ag. Then Lara-Martin

» Can we isolate induction principles P1 and P2 such that
if T+ 1IN Fp, 0, then

Local Reflection

el | T+Pllkp,6

0 € B(X1) T+P2F,0

» Can we prove that for each 6 € 1 N Sent, if
T+ IN] 6, then

[T,M1—IR]m 6 ?
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» We denote by /(I", K,) the following induction scheme Lara-Martin
P(0)AYX (p(x) = p(x+1)) = (Us — ¥x(3(x) = ¢(x)))
where ¢(x) € T, 6(x) € X, and U; is the sentence L
Vx1 Vxo (0(x1) A 6(x2) — x1 = x2)

» (T, K,)-IR denotes the following inference rule:

p(0) A VX (p(x) — ¢(x + 1))
Us = Vx(d(x) — ()

where ¢(x) € I" and 0(x) € X, .

» (T, K,) and (I'", Kp)-IR denote the parameter free
versions

» The rule (I'", Cp)—IRo is defined in a similar way.



Connection with parameter free IN;—induction o vs s
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» Over IAO, /|_|1_ = I(Zl_,’C]_) Lara—Martin

» The equivalence is one-to-one: one instance of the first
scheme suffices to derive a given instance of the second
one (and viceversa).

» For every theory T extending /Ay, N e

[T,(X1,K1)-IRo] = [T,N;=IR0]

> It is again a “one-to—one equivalence”.
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Let T be IAg + Vx3yp(x,y), where o(x,y) € Ag and 1A
proves that o(x, y) defines a nondecreasing function. Let
m > 1 and let 6 be a sentence.

> Assume T + /(X ,K1) Fm 6. Then
ey | [T,(X1,K1)-IR] Fpn 0

Cordén—Franco,
Lara—Martin

Local Induction

0 € B(X1) [T,(B(X1)",K1)-IR] Fpm 0

> If 6 € B(X1) and T + IT] Fp, 0, then there exist
sentences 71,...,m € [y and 01,...,0, € X1 such
that = \/7_;(oj A m;) and for each j=1,...,r,

[T+Uj/\7rj,r|1_—|R0] Fm 0
» If in addition 8 € Iy, then

[T +o0; Amj,TT1=IR]m = 60



Some ideas from the proof o va rlen
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» Two key pOintS: Lara—Martin

» Adamowicz—Bigorajska—Kaye—Mints—Ratajczyk'’s
Theorem has a local version.

» A local version of the equivalence between applications
of X1—IR and iteration holds.

Local Induction

» For every m>1and 0 €Tl
If T+ /1(X;,K1)Fm6 then [T, (X1, K1)-IR]m 6

» (Local iteration theorem) The following theories are
equivalent:
» T+ (Z]_, IC1)—IR
> [T, (Zl, ’Cl)—lR]
» T+ VueKiVx3y (FU(x) =y).
(where f(x) = (x + 1) + (ux)¢(x, y)).
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In the case n = 2, we have: Lara-Martin
> N5 =1(X5,K?).
> [(X2, Kp) is Ma—conservative over IX] + (X2, K2)-IR.
> /¥ extends IX] + (X2, K2)-IR.
» Reduction: Concluding
IT] + (X2, K)-IR =127 + (1A¢ + (X2, K2)-IR). femats
> A refinement of the (proof of) Local Iteration Theorem

shows that /Z; extends /Ag + (X, K2)-IR.
> It follows that /T1; is lN3—conservative over /X ;.

» Question: Let 6 € N3 N Sent such that
17 +1(X5,K2) bm 6.
» Does [IX], (X2, K2)-IR] k-, 6 hold?

» Assume that /Ag + IT15 Fp 6 with 6 € B(X) N Sent or
0 € M, N Sent.

What can we say in these cases?
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