
ALGORITHMIC COMPLETENESS OF IMPERATIVE
LANGUAGES

Yoann Marquer

University Paris-Est Créteil

A function is effectively calculable if there exists an effective method for
calculating its output for a given set of inputs. This effective method is called
an algorithm. According to the Church-Turing thesis the effectively calculable
functions on the integers are the functions computable by a Turing machine. A
computation model is Turing complete if it can compute all these functions. For
example the Turing machines, the lambda-calculus or the recursive functions are
Turing complete. More generally, a model is functionally complete for a given
class of functions if it can compute all the functions of the class. That means
that it is possible to define in the computation model at least one algorithm for
calculating the function.

Löıc Colson proved that the optimal algorithm for the min function can-
not be used in the computation model of the primitive recursive functions, and
Moschovakis did the same with the gcd function. But these functions are prim-
itive recursive. That means that the computation model can compute one of
their algorithms, not all their algorithms. It is functionally complete but not
algorithmically complete.

Yuri Gurevich axiomatized the algorithms with sequential time, abstract
data structure and bounded exploration, and he characterized these sequential
algorithms with the Abstract State Machines (ASMs). So, a computation model
is algorithmically complete if it can simulate the abstract state machines. The
simulation is said to be faithful if it allows only a constant temporal dilatation
and a bounded number of new temporary variables.

I formalized imperative languages with a state transition system allowing
updates, and commands for the control flow. The transition system verifies the
sequential time, the states are the same as the ASMs, and the exploration is
bounded.

I proved that with the update, if and while commands every ASM can
be faithfully simulated, so this computation model is algorithmically complete.
That means that every sequential algorithm can be written in an imperative
language with these commands.

But some interesting subclass of algorithms can be obtained in the same
way with a less powerful language. For example, every ASM with a primitive
recursive complexity and data structure can be faithfully simulated with the,
if, loop, and exit commands. So, for the studied subclasses, it is possible to
determine the commands needed to write the optimal algorithm of the desired
function.

1


