
1 / 18

Sequential Algorithms
Imperative Languages

Conclusion and Future Work

Algorithmic Completeness
of Imperative Languages

Yoann Marquer

LACL, University Paris-Est Créteil

June 16 2014

Yoann Marquer Algorithmic Completeness of Imperative Languages

2 / 18

Sequential Algorithms
Imperative Languages

Conclusion and Future Work

Introduction

1) Palindrome recognition
- one tape : O(n2/log(n))
- two tapes : O(n)
Equivalence between models : extensionally 6= intentionally
2) Lack of efficient PR algorithms :
- min (1991 : Colson)
- gcd (2003 : Moschovakis)
Completeness of a model : functionally 6= algorithmically
3) Formalization of sequential algorithms
- Recursors (Moschovakis)
- Abstract State Machines (Gurevich)

Yoann Marquer Algorithmic Completeness of Imperative Languages

3 / 18

Sequential Algorithms
Imperative Languages

Conclusion and Future Work

Three Postulates
Abstract States Machines
Fairly Simulation

Contents

1 Sequential Algorithms
Three Postulates
Abstract States Machines
Fairly Simulation

2 Imperative Languages
Syntax and Operational Semantics
Algorithmic Completeness of While
Simulation of ASMs

3 Conclusion and Future Work

Yoann Marquer Algorithmic Completeness of Imperative Languages

4 / 18

Sequential Algorithms
Imperative Languages

Conclusion and Future Work

Three Postulates
Abstract States Machines
Fairly Simulation

Definition (Gurevich’s Algo)

1) Sequential time : S(A), I (A) ⊆ S(A), τA : S(A)→ S(A)
2) Abstract states : states are first order structures, L(A), U(A)
3) Bounded exploration : the number of terms read by A is finite.

An execution of A is ~X = X0,X1,X2, ... such that
- X0 ∈ I (A)
- for all i ∈ N : Xi+1 = τA(Xi)
Terminal execution : X0,X1, ... Xm,Xm, ...
time(A,X) = min{i ∈ N? ; τ iA(X) = τ i−1

A (X)}

Yoann Marquer Algorithmic Completeness of Imperative Languages

5 / 18

Sequential Algorithms
Imperative Languages

Conclusion and Future Work

Three Postulates
Abstract States Machines
Fairly Simulation

Contents

1 Sequential Algorithms
Three Postulates
Abstract States Machines
Fairly Simulation

2 Imperative Languages
Syntax and Operational Semantics
Algorithmic Completeness of While
Simulation of ASMs

3 Conclusion and Future Work

Yoann Marquer Algorithmic Completeness of Imperative Languages

6 / 18

Sequential Algorithms
Imperative Languages

Conclusion and Future Work

Three Postulates
Abstract States Machines
Fairly Simulation

Definition (ASM)

Π =def ft1...tk := t0

| if F then Π1 else Π2 endif

| par Π1‖...‖Πn endpar

τΠ(X) = X + ∆(Π,X), where :
- ∆(ft1...tk := t0,X) = {(f , t1

X , ... tk
X , t0

X)}
- ∆(if F then Π1 else Π2 endif,X) = ∆(Πi ,X)

where i = 1 if F
X

= true and i = 2 if F
X

= false
- ∆(par Π1‖...‖Πn endpar,X) = ∆(Π1,X) ∪ ... ∪∆(Πn,X)

Theorem (Gurevich, 2000)

Algo = ASM

Yoann Marquer Algorithmic Completeness of Imperative Languages

7 / 18

Sequential Algorithms
Imperative Languages

Conclusion and Future Work

Three Postulates
Abstract States Machines
Fairly Simulation

Contents

1 Sequential Algorithms
Three Postulates
Abstract States Machines
Fairly Simulation

2 Imperative Languages
Syntax and Operational Semantics
Algorithmic Completeness of While
Simulation of ASMs

3 Conclusion and Future Work

Yoann Marquer Algorithmic Completeness of Imperative Languages

8 / 18

Sequential Algorithms
Imperative Languages

Conclusion and Future Work

Three Postulates
Abstract States Machines
Fairly Simulation

Temporary Variables ?
loop n {s}
i := n; while i > 0 {s; i := i − 1}

Arbitrary Time Unit ?
X0,X1,X2,X3,X4,X5,X6, ...
Y0, Y1, Y2, ...

Definition (M1 simulates M2)

For all P2 ∈ M2 there exists P1 ∈ M1 and d ∈ N? such that :
1) L(P1) ⊇ L(P2) and L(P1) \ L(P2) is a finite set of variables
2) for all execution ~Y of P2 there exists an execution ~X of P1 :
- for all i ∈ N Xd×i |L(P2) = Yi

- d × time(P1,X0) = time(P2,Y0)
If bisimulation M1 ' M2 : they are algorithmically equivalent.

Yoann Marquer Algorithmic Completeness of Imperative Languages

9 / 18

Sequential Algorithms
Imperative Languages

Conclusion and Future Work

Syntax and Operational Semantics
Algorithmic Completeness of While
Simulation of ASMs

Contents

1 Sequential Algorithms
Three Postulates
Abstract States Machines
Fairly Simulation

2 Imperative Languages
Syntax and Operational Semantics
Algorithmic Completeness of While
Simulation of ASMs

3 Conclusion and Future Work

Yoann Marquer Algorithmic Completeness of Imperative Languages

10 / 18

Sequential Algorithms
Imperative Languages

Conclusion and Future Work

Syntax and Operational Semantics
Algorithmic Completeness of While
Simulation of ASMs

Definition (While)

(commands) c ::= ft1...tk := t0 | while F {s}
(sequences) s ::= ε | c ; s
(programs) P ::= {s}

{ft1...tk := t0; s} ? X �{s} ? X + {(f , t1
X , ... tk

X , t0
X)}

{while F {s1}; s2} ? X �{s1; while F {s1}; s2} ? X if F
X

= true

{while F {s1}; s2} ? X �{s2} ? X if F
X

= false

skip and if can be simulated.

Yoann Marquer Algorithmic Completeness of Imperative Languages

11 / 18

Sequential Algorithms
Imperative Languages

Conclusion and Future Work

Syntax and Operational Semantics
Algorithmic Completeness of While
Simulation of ASMs

P ? X �i τ
i
X (P) ? τ iP(X)

time(P,X) =def min{i ∈ N ; τ iX (P) = {} }
If finite : P terminates on X , and P(X) =def τ

time(P,X)
P (X)

Definition (Updates of an Imperative Program)

∆(P,X) =def
⋃

i∈N τ
i+1
P (X)− τ iP(X)

Yoann Marquer Algorithmic Completeness of Imperative Languages

12 / 18

Sequential Algorithms
Imperative Languages

Conclusion and Future Work

Syntax and Operational Semantics
Algorithmic Completeness of While
Simulation of ASMs

Contents

1 Sequential Algorithms
Three Postulates
Abstract States Machines
Fairly Simulation

2 Imperative Languages
Syntax and Operational Semantics
Algorithmic Completeness of While
Simulation of ASMs

3 Conclusion and Future Work

Yoann Marquer Algorithmic Completeness of Imperative Languages

13 / 18

Sequential Algorithms
Imperative Languages

Conclusion and Future Work

Syntax and Operational Semantics
Algorithmic Completeness of While
Simulation of ASMs

Theorem (2014, M.)

While ' Algo

Sketch of the proof :
An imperative program can be simulated, with d = 1
and an instruction counter ` initialized at 0 :

Example : a program for min
P is {x := 0; while ¬(x = m ∨ x = n) {x := x + 1; }; }
ΠP is if ` = 0 then x := 0‖` := 1

‖if ` = 1 then if ¬(x = m ∨ x = n)
then x := x + 1‖` := 1
else ` := 2

Yoann Marquer Algorithmic Completeness of Imperative Languages

14 / 18

Sequential Algorithms
Imperative Languages

Conclusion and Future Work

Syntax and Operational Semantics
Algorithmic Completeness of While
Simulation of ASMs

Contents

1 Sequential Algorithms
Three Postulates
Abstract States Machines
Fairly Simulation

2 Imperative Languages
Syntax and Operational Semantics
Algorithmic Completeness of While
Simulation of ASMs

3 Conclusion and Future Work

Yoann Marquer Algorithmic Completeness of Imperative Languages

15 / 18

Sequential Algorithms
Imperative Languages

Conclusion and Future Work

Syntax and Operational Semantics
Algorithmic Completeness of While
Simulation of ASMs

Definition (Naive Translation Πtr of an ASM program Π)

- (ft1...tk := t0)tr is {ft1...tk := t0; }
- (if F then Π1 else Π2 endif)tr is {if F Πtr

1 else Πtr
2 ; }

- (par Π1‖...‖Πk endpar)tr is Πtr
1 ... Πtr

k (composition)

Example : (par x := y‖y := x endpar)tr is {x := y ; y := x ; }

Proposition (Correct Semantics for the Translation)

Let {~t} be the terms read by Π and ~v be fresh variables.
∆(Πtr [~v/~t],X + {(~v , ~tX)}) = ∆(Π,X |L(Π))

Yoann Marquer Algorithmic Completeness of Imperative Languages

16 / 18

Sequential Algorithms
Imperative Languages

Conclusion and Future Work

Syntax and Operational Semantics
Algorithmic Completeness of While
Simulation of ASMs

Let PΠ be ~v := ~t; Πtr [~v/~t] (+ padding with skip)

Proposition

For all X ∆(PΠ,X)|L(Π) = ∆(Π,X |L(Π))
There exists tΠ ∈ N such that for all X time(PΠ,X) = tΠ

For all X time(Π,X) = min{i ∈ N ; FΠ
P i

Π(X)
= true}

where FΠ is
∧
~v = ~t

PΠ while ¬FΠ {PΠ} simulates Π, with :
- temporal dilatation : d = tΠ + 1
- temporary variables : ~v

Yoann Marquer Algorithmic Completeness of Imperative Languages

17 / 18

Sequential Algorithms
Imperative Languages

Conclusion and Future Work

Conclusion and Future Work

Theorem (2014, M.)

While ' Algo

Same states (first order structures)
Faithful implementation of the usual data structures ?
Restrictions on programs or data structures for subclasses of Algo ?

Yoann Marquer Algorithmic Completeness of Imperative Languages

18 / 18

Sequential Algorithms
Imperative Languages

Conclusion and Future Work

Thank you !

Yoann Marquer Algorithmic Completeness of Imperative Languages

19 / 18

Sequential Algorithms
Imperative Languages

Conclusion and Future Work

Yoann Marquer Algorithmic Completeness of Imperative Languages

20 / 18

Sequential Algorithms
Imperative Languages

Conclusion and Future Work

Operational semantics of the imperative programs :

{skip; s} ? X �{s} ? X
{ft1...tk := t0; s} ? X �{s} ? X [f (t1

X , ... tk
X) = t0

X)]

{if F {s1} else {s2}; s3} ? X �{s1; s3} ? X if F
X

= true

{if F {s1} else {s2}; s3} ? X �{s2; s3} ? X if F
X

= false

{while F {s1}; s2} ? X �{s1; while F {s1}; s2} ? X if F
X

= true

{while F {s1}; s2} ? X �{s2} ? X if F
X

= false

{loop n {s1}; s2} ? X �{s1; loop SnX−10 {s1}; s2} ? X if nX > 0
{loop n {s1}; s2} ? X �{s2} ? X if nX = 0

{exit; s} ? X �{} ? X

Yoann Marquer Algorithmic Completeness of Imperative Languages

21 / 18

Sequential Algorithms
Imperative Languages

Conclusion and Future Work

Loope is Imp restricted to updates, if, loop and exit commands.
is from APRA (2010 : Andary, Patrou, Valarcher)
Let |a| be the size of A ∈ U(A).

Definition (AlgoPR = {A ∈ Algo ; cA ∈ PR})
cA : ~n 7→ max{time(A,X) ; ~s inputs of A and |~s|X = ~n}
where |x |X = |xX | and |f |X = max{|f X (~tX)| ; f ~t ∈ sub(T (A))}

But n := ackermann(n, n); loop n {} ?
PR data structures : for all operation f
there exists ϕf ∈ PR monotonic such that |f (~a)| ≤ ϕf (|~a|)

Theorem (2014, M.)

For PR data structures Loope ' AlgoPR

Yoann Marquer Algorithmic Completeness of Imperative Languages

22 / 18

Sequential Algorithms
Imperative Languages

Conclusion and Future Work

Theorem (2014, M.)

For all data structures While ' Algo
For PR data structures Loope ' AlgoPR

The control flow is known, but with the same data structures.
They are first-order structures : implementation ?

Proposition (Constructive Second Postulate)

Usual data structures (integers, words, lists, arrays)
can be faithfully implemented as first order structure.

Yoann Marquer Algorithmic Completeness of Imperative Languages

23 / 18

Sequential Algorithms
Imperative Languages

Conclusion and Future Work

Conjecture (Characterization of Complexity)

For Pol data structures Loope + C1 ' AlgoPol
For Lin data structures Loope + C2 ' AlgoLin

(C1) : for all loop ∈ P VarCon(loop) ∩ VarUpd(loop) = ∅
(C2) : for all loop ∈ P card(VarCon(loop)) ≤ 1

Example (Cost of Operations)

For unary integers : + ∈ Lin, × ∈ Pol and pow ∈ PR
For binary integers : + ∈ Lin, × ∈ Lin and pow ∈ Pol

Yoann Marquer Algorithmic Completeness of Imperative Languages

	Sequential Algorithms
	Three Postulates
	Abstract States Machines
	Fairly Simulation

	Imperative Languages
	Syntax and Operational Semantics
	Algorithmic Completeness of While
	Simulation of ASMs

	Conclusion and Future Work

