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Introduction

1) Palindrome recognition
- one tape : O(n2/log(n))
- two tapes : O(n)
Equivalence between models : extensionally 6= intentionally
2) Lack of efficient PR algorithms :
- min (1991 : Colson)
- gcd (2003 : Moschovakis)
Completeness of a model : functionally 6= algorithmically
3) Formalization of sequential algorithms
- Recursors (Moschovakis)
- Abstract State Machines (Gurevich)
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Definition (Gurevich’s Algo)

1) Sequential time : S(A), I (A) ⊆ S(A), τA : S(A)→ S(A)
2) Abstract states : states are first order structures, L(A), U(A)
3) Bounded exploration : the number of terms read by A is finite.

An execution of A is ~X = X0,X1,X2, ... such that
- X0 ∈ I (A)
- for all i ∈ N : Xi+1 = τA(Xi )
Terminal execution : X0,X1, ... Xm,Xm, ...
time(A,X ) = min{i ∈ N? ; τ iA(X ) = τ i−1

A (X )}
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Definition (ASM)

Π =def ft1...tk := t0

| if F then Π1 else Π2 endif

| par Π1‖...‖Πn endpar

τΠ(X ) = X + ∆(Π,X ), where :
- ∆(ft1...tk := t0,X ) = {(f , t1

X , ... tk
X , t0

X )}
- ∆(if F then Π1 else Π2 endif,X ) = ∆(Πi ,X )

where i = 1 if F
X

= true and i = 2 if F
X

= false
- ∆(par Π1‖...‖Πn endpar,X ) = ∆(Π1,X ) ∪ ... ∪∆(Πn,X )

Theorem (Gurevich, 2000)

Algo = ASM
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Temporary Variables ?
loop n {s}
i := n; while i > 0 {s; i := i − 1}

Arbitrary Time Unit ?
X0,X1,X2,X3,X4,X5,X6, ...
Y0, Y1, Y2, ...

Definition (M1 simulates M2)

For all P2 ∈ M2 there exists P1 ∈ M1 and d ∈ N? such that :
1) L(P1) ⊇ L(P2) and L(P1) \ L(P2) is a finite set of variables
2) for all execution ~Y of P2 there exists an execution ~X of P1 :
- for all i ∈ N Xd×i |L(P2) = Yi

- d × time(P1,X0) = time(P2,Y0)
If bisimulation M1 ' M2 : they are algorithmically equivalent.
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Definition (While)

(commands) c ::= ft1...tk := t0 | while F {s}
(sequences) s ::= ε | c ; s
(programs) P ::= {s}

{ft1...tk := t0; s} ? X �{s} ? X + {(f , t1
X , ... tk

X , t0
X )}

{while F {s1}; s2} ? X �{s1; while F {s1}; s2} ? X if F
X

= true

{while F {s1}; s2} ? X �{s2} ? X if F
X

= false

skip and if can be simulated.
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P ? X �i τ
i
X (P) ? τ iP(X )

time(P,X ) =def min{i ∈ N ; τ iX (P) = {} }
If finite : P terminates on X , and P(X ) =def τ

time(P,X )
P (X )

Definition (Updates of an Imperative Program)

∆(P,X ) =def
⋃

i∈N τ
i+1
P (X )− τ iP(X )
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Theorem (2014, M.)

While ' Algo

Sketch of the proof :
An imperative program can be simulated, with d = 1
and an instruction counter ` initialized at 0 :

Example : a program for min
P is {x := 0; while ¬(x = m ∨ x = n) {x := x + 1; }; }
ΠP is if ` = 0 then x := 0‖` := 1

‖if ` = 1 then if ¬(x = m ∨ x = n)
then x := x + 1‖` := 1
else ` := 2
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Definition (Naive Translation Πtr of an ASM program Π)

- (ft1...tk := t0)tr is {ft1...tk := t0; }
- (if F then Π1 else Π2 endif)tr is {if F Πtr

1 else Πtr
2 ; }

- (par Π1‖...‖Πk endpar)tr is Πtr
1 ... Πtr

k (composition)

Example : (par x := y‖y := x endpar)tr is {x := y ; y := x ; }

Proposition (Correct Semantics for the Translation)

Let {~t} be the terms read by Π and ~v be fresh variables.
∆(Πtr [~v/~t],X + {(~v , ~tX )}) = ∆(Π,X |L(Π))
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Let PΠ be ~v := ~t; Πtr [~v/~t] (+ padding with skip)

Proposition

For all X ∆(PΠ,X )|L(Π) = ∆(Π,X |L(Π))
There exists tΠ ∈ N such that for all X time(PΠ,X ) = tΠ

For all X time(Π,X ) = min{i ∈ N ; FΠ
P i

Π(X )
= true}

where FΠ is
∧
~v = ~t

PΠ while ¬FΠ {PΠ} simulates Π, with :
- temporal dilatation : d = tΠ + 1
- temporary variables : ~v
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Theorem (2014, M.)

While ' Algo

Same states (first order structures)
Faithful implementation of the usual data structures ?
Restrictions on programs or data structures for subclasses of Algo ?
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Thank you !
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Operational semantics of the imperative programs :

{skip; s} ? X �{s} ? X
{ft1...tk := t0; s} ? X �{s} ? X [f (t1

X , ... tk
X ) = t0

X )]

{if F {s1} else {s2}; s3} ? X �{s1; s3} ? X if F
X

= true

{if F {s1} else {s2}; s3} ? X �{s2; s3} ? X if F
X

= false

{while F {s1}; s2} ? X �{s1; while F {s1}; s2} ? X if F
X

= true

{while F {s1}; s2} ? X �{s2} ? X if F
X

= false

{loop n {s1}; s2} ? X �{s1; loop SnX−10 {s1}; s2} ? X if nX > 0
{loop n {s1}; s2} ? X �{s2} ? X if nX = 0

{exit; s} ? X �{} ? X
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Loope is Imp restricted to updates, if, loop and exit commands.
is from APRA (2010 : Andary, Patrou, Valarcher)
Let |a| be the size of A ∈ U(A).

Definition (AlgoPR = {A ∈ Algo ; cA ∈ PR})
cA : ~n 7→ max{time(A,X ) ; ~s inputs of A and |~s|X = ~n}
where |x |X = |xX | and |f |X = max{|f X (~tX )| ; f ~t ∈ sub(T (A))}

But n := ackermann(n, n); loop n {} ?
PR data structures : for all operation f
there exists ϕf ∈ PR monotonic such that |f (~a)| ≤ ϕf (|~a|)

Theorem (2014, M.)

For PR data structures Loope ' AlgoPR

Yoann Marquer Algorithmic Completeness of Imperative Languages



22 / 18

Sequential Algorithms
Imperative Languages

Conclusion and Future Work

Theorem (2014, M.)

For all data structures While ' Algo
For PR data structures Loope ' AlgoPR

The control flow is known, but with the same data structures.
They are first-order structures : implementation ?

Proposition (Constructive Second Postulate)

Usual data structures (integers, words, lists, arrays)
can be faithfully implemented as first order structure.
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Conjecture (Characterization of Complexity)

For Pol data structures Loope + C1 ' AlgoPol
For Lin data structures Loope + C2 ' AlgoLin

(C1) : for all loop ∈ P VarCon(loop) ∩ VarUpd(loop) = ∅
(C2) : for all loop ∈ P card(VarCon(loop)) ≤ 1

Example (Cost of Operations)

For unary integers : + ∈ Lin, × ∈ Pol and pow ∈ PR
For binary integers : + ∈ Lin, × ∈ Lin and pow ∈ Pol
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