Algorithmic Completeness of Imperative Languages

Yoann Marquer

LACL, University Paris-Est Créteil

June 16 2014

Introduction

- 1) Palindrome recognition
- one tape : $O(n^2/log(n))$
- two tapes : O(n)
- Equivalence between models : extensionally \neq intentionally
- 2) Lack of efficient PR algorithms :
- min (1991 : Colson)
- gcd (2003 : Moschovakis)
- $\textit{Completeness of a model}: \textbf{functionally} \neq \textbf{algorithmically}$
- 3) Formalization of sequential algorithms
- Recursors (Moschovakis)
- Abstract State Machines (Gurevich)

Sequential Algorithms

Imperative Languages Conclusion and Future Work Three Postulates Abstract States Machines Fairly Simulation

Contents

Sequential Algorithms

Three Postulates

- Abstract States Machines
- Fairly Simulation

2 Imperative Languages

- Syntax and Operational Semantics
- Algorithmic Completeness of While
- Simulation of ASMs

3 Conclusion and Future Work

Three Postulates Abstract States Machines Fairly Simulation

Definition (Gurevich's Algo)

- 1) Sequential time : S(A), $I(A) \subseteq S(A)$, $\tau_A : S(A) \to S(A)$
- 2) Abstract states : states are first order structures, $\mathcal{L}(A)$, $\mathcal{U}(A)$
- 3) Bounded exploration : the number of terms read by A is finite.

An execution of A is $\vec{X} = X_0, X_1, X_2, ...$ such that

- $X_0 \in I(A)$ - for all $i \in \mathbb{N}$: $X_{i+1} = \tau_A(X_i)$ Terminal execution : $X_0, X_1, \dots, X_m, X_m, \dots$ $time(A, X) = min\{i \in \mathbb{N}^* : \tau_A^i(X) = \tau_A^{i-1}(X)\}$

Three Postulates Abstract States Machines Fairly Simulation

Contents

Sequential Algorithms

Three Postulates

Abstract States Machines

Fairly Simulation

2 Imperative Languages

- Syntax and Operational Semantics
- Algorithmic Completeness of While
- Simulation of ASMs

3 Conclusion and Future Work

Three Postulates Abstract States Machines Fairly Simulation

Definition (ASM)

 $\begin{aligned} \Pi =_{def} ft_1...t_k &:= t_0 \\ & | \text{ if } F \text{ then } \Pi_1 \text{ else } \Pi_2 \text{ endif} \\ & | \text{ par } \Pi_1 \| ... \| \Pi_n \text{ endpar} \end{aligned}$

$$\tau_{\Pi}(X) = X + \Delta(\Pi, X), \text{ where }:$$

- $\Delta(ft_1...t_k := t_0, X) = \{(f, \overline{t_1}^X, ..., \overline{t_k}^X, \overline{t_0}^X)\}$

- $\Delta(\text{if }F \text{ then }\Pi_1 \text{ else }\Pi_2 \text{ endif}, X) = \Delta(\Pi_i, X)$

where
$$i = 1$$
 if $\overline{F}^{X} = true$ and $i = 2$ if $\overline{F}^{X} = false$

- $\Delta(\operatorname{par} \Pi_1 \| ... \| \Pi_n \text{ endpar}, X) = \Delta(\Pi_1, X) \cup ... \cup \Delta(\Pi_n, X)$

Theorem (Gurevich, 2000)

Algo = ASM

Three Postulates Abstract States Machines Fairly Simulation

Contents

Sequential Algorithms

- Three Postulates
- Abstract States Machines
- Fairly Simulation

2 Imperative Languages

- Syntax and Operational Semantics
- Algorithmic Completeness of While
- Simulation of ASMs

3 Conclusion and Future Work

Three Postulates Abstract States Machines Fairly Simulation

Temporary Variables? loop $n \{s\}$ i := n; while $i > 0 \{s; i := i - 1\}$

Arbitrary Time Unit? $X_0, X_1, X_2, X_3, X_4, X_5, X_6, ...$ $Y_0, Y_1, Y_2, ...$

Definition $(M_1 \text{ simulates } M_2)$

For all $P_2 \in M_2$ there exists $P_1 \in M_1$ and $d \in \mathbb{N}^*$ such that : 1) $\mathcal{L}(P_1) \supseteq \mathcal{L}(P_2)$ and $\mathcal{L}(P_1) \setminus \mathcal{L}(P_2)$ is a finite set of variables 2) for all execution \vec{Y} of P_2 there exists an execution \vec{X} of P_1 : - for all $i \in \mathbb{N} X_{d \times i}|_{\mathcal{L}(P_2)} = Y_i$ - $d \times time(P_1, X_0) = time(P_2, Y_0)$ If bisimulation $M_1 \simeq M_2$: they are algorithmically equivalent.

Syntax and Operational Semantics Algorithmic Completeness of While Simulation of ASMs

Contents

Sequential Algorithms

- Three Postulates
- Abstract States Machines
- Fairly Simulation

2 Imperative Languages

- Syntax and Operational Semantics
- Algorithmic Completeness of While
- Simulation of ASMs

3 Conclusion and Future Work

Syntax and Operational Semantics Algorithmic Completeness of While Simulation of ASMs

Definition (While)

(commands) $c ::= ft_1...t_k := t_0 | while F \{s\}$ (sequences) $s ::= \epsilon | c; s$ (programs) $P ::= \{s\}$

 $\{ft_1...t_k := t_0; s\} \star X \succ \{s\} \star X + \{(f, \overline{t_1}^X, ..., \overline{t_k}^X, \overline{t_0}^X)\}$ $\{\text{while } F \ \{s_1\}; s_2\} \star X \succ \{s_1; \text{while } F \ \{s_1\}; s_2\} \star X \text{ if } \overline{F}^X = true$ $\{\text{while } F \ \{s_1\}; s_2\} \star X \succ \{s_2\} \star X \text{ if } \overline{F}^X = false$

skip and if can be simulated.

Syntax and Operational Semantics Algorithmic Completeness of While Simulation of ASMs

 $P \star X \succ_i \tau_X^i(P) \star \tau_P^i(X)$ time(P,X) =_{def} min{ $i \in \mathbb{N}$; $\tau_X^i(P) = \{\}$ } If finite : P terminates on X, and $P(X) =_{def} \tau_P^{time(P,X)}(X)$

Definition (Updates of an Imperative Program)

 $\Delta(P,X) =_{def} \bigcup_{i \in \mathbb{N}} \tau_P^{i+1}(X) - \tau_P^i(X)$

Syntax and Operational Semantics Algorithmic Completeness of While Simulation of ASMs

Contents

Sequential Algorithms

- Three Postulates
- Abstract States Machines
- Fairly Simulation

2 Imperative Languages

- Syntax and Operational Semantics
- Algorithmic Completeness of While
- Simulation of ASMs

3 Conclusion and Future Work

Sequential Algorithms Syntax Imperative Languages Algorit Conclusion and Future Work Simula

Syntax and Operational Semantics Algorithmic Completeness of While Simulation of ASMs

Theorem (2014, M.)

While \simeq *Algo*

Sketch of the proof :

An imperative program can be simulated, with d=1 and an instruction counter ℓ initialized at 0 :

Example : a program for min $P \text{ is } \{x := 0; \text{ while } \neg(x = m \lor x = n) \{x := x + 1; \}; \}$ $\Pi_P \text{ is if } \ell = 0 \text{ then } x := 0 ||\ell := 1$ $\|\text{if } \ell = 1 \text{ then if } \neg(x = m \lor x = n)$ $\text{ then } x := x + 1 ||\ell := 1$ $\text{else } \ell := 2$

Syntax and Operational Semantics Algorithmic Completeness of While Simulation of ASMs

Contents

Sequential Algorithms

- Three Postulates
- Abstract States Machines
- Fairly Simulation

2 Imperative Languages

- Syntax and Operational Semantics
- Algorithmic Completeness of While
- Simulation of ASMs

3 Conclusion and Future Work

Sequential Algorithms Syntax and Operational Semantics Algorithmic Completeness of While Simulation of ASMs

Definition (Naive Translation Π^{tr} of an ASM program Π)

- $(ft_1...t_k := t_0)^{tr}$ is $\{ft_1...t_k := t_0;\}$
- (if F then Π_1 else Π_2 endif)^{tr} is {if $F \Pi_1^{tr}$ else Π_2^{tr} ; }
- $(\operatorname{par} \Pi_1 \| \dots \| \Pi_k \operatorname{endpar})^{tr}$ is $\Pi_1^{tr} \dots \Pi_k^{tr}$ (composition)

Example :
$$(par x := y || y := x endpar)^{tr}$$
 is $\{x := y; y := x; \}$

Proposition (Correct Semantics for the Translation)

Let $\{\vec{t}\}$ be the terms read by Π and \vec{v} be fresh variables. $\Delta(\Pi^{tr}[\vec{v}/\vec{t}], X + \{(\vec{v}, \vec{t}^{X})\}) = \Delta(\Pi, X|_{\mathcal{L}(\Pi)})$

Syntax and Operational Semantics Algorithmic Completeness of While Simulation of ASMs

Let P_{Π} be $\vec{v} := \vec{t}; \Pi^{tr}[\vec{v}/\vec{t}]$ (+ padding with skip)

Proposition

For all $X \ \Delta(P_{\Pi}, X)|_{\mathcal{L}(\Pi)} = \Delta(\Pi, X|_{\mathcal{L}(\Pi)})$ There exists $t_{\Pi} \in \mathbb{N}$ such that for all $X \ time(P_{\Pi}, X) = t_{\Pi}$ For all $X \ time(\Pi, X) = min\{i \in \mathbb{N} ; \ \overline{F_{\Pi}}^{P_{\Pi}^{i}(X)} = true\}$ where $F_{\Pi} \ is \bigwedge \vec{v} = \vec{t}$

 P_{Π} while $\neg F_{\Pi}$ { P_{Π} } simulates Π , with :

- temporal dilatation : $d = t_{\Pi} + 1$
- temporary variables : \vec{v}

Conclusion and Future Work

Theorem (2014, M.)

While \simeq *Algo*

Same states (first order structures) Faithful implementation of the usual data structures ? Restrictions on programs or data structures for subclasses of Algo?

Thank you!

Operational semantics of the imperative programs :

$$\{ skip; s \} \star X \succ \{ s \} \star X$$

$$\{ ft_1...t_k := t_0; s \} \star X \succ \{ s \} \star X [f(\overline{t_1}^X, ..., \overline{t_k}^X) = \overline{t_0}^X)]$$

$$\{ if F \{ s_1 \} else \{ s_2 \}; s_3 \} \star X \succ \{ s_1; s_3 \} \star X \text{ if } \overline{F}^X = true$$

$$\{ if F \{ s_1 \} else \{ s_2 \}; s_3 \} \star X \succ \{ s_2; s_3 \} \star X \text{ if } \overline{F}^X = false$$

$$\{ while F \{ s_1 \}; s_2 \} \star X \succ \{ s_1; while F \{ s_1 \}; s_2 \} \star X \text{ if } \overline{F}^X = true$$

$$\{ while F \{ s_1 \}; s_2 \} \star X \succ \{ s_2 \} \star X \text{ if } \overline{F}^X = false$$

$$\{ uhile F \{ s_1 \}; s_2 \} \star X \succ \{ s_2 \} \star X \text{ if } \overline{F}^X = false$$

$$\{ loop n \{ s_1 \}; s_2 \} \star X \succ \{ s_1; loop S^{\overline{n}^X - 1}0 \{ s_1 \}; s_2 \} \star X \text{ if } \overline{n}^X > 0$$

$$\{ loop n \{ s_1 \}; s_2 \} \star X \succ \{ s_2 \} \star X \text{ if } \overline{n}^X = 0$$

$$\{ exit; s \} \star X \succ \{ \} \star X$$

Loop_e is Imp restricted to updates, if, loop and exit commands. is from APRA (2010 : Andary, Patrou, Valarcher) Let |a| be the size of $A \in U(A)$.

Definition $(Algo_{PR} = \{A \in Algo ; c_A \in PR\})$

 $c_A : \vec{n} \mapsto \max\{ time(A, X) ; \ \vec{s} \ inputs \ of \ A \ and \ |\vec{s}|_X = \vec{n} \}$ where $|x|_X = |\overline{x}^X|$ and $|f|_X = \max\{|\overline{f}^X(\vec{t}^X)| ; \ f\vec{t} \in sub(T(A))\}$

But n := ackermann(n, n); loop $n \{\}$?

PR data structures : for all operation *f* there exists $\varphi_f \in PR$ monotonic such that $|\overline{f}(\vec{a})| \leq \varphi_f(|\vec{a}|)$

Theorem (2014, M.)

For PR data structures $Loop_e \simeq Algo_{PR}$

Theorem (2014, M.)

For all data structures While \simeq Algo For PR data structures Loop_e \simeq Algo_{PR}

The control flow is known, but with the same data structures. They are first-order structures : implementation ?

Proposition (Constructive Second Postulate)

Usual data structures (integers, words, lists, arrays) can be faithfully implemented as first order structure.

Conjecture (Characterization of Complexity)

For Pol data structures $Loop_e + C_1 \simeq Algo_{Pol}$ For Lin data structures $Loop_e + C_2 \simeq Algo_{Lin}$

 (C_1) : for all loop $\in P$ VarCon(loop) \cap VarUpd(loop) = \emptyset (C_2) : for all loop $\in P$ card(VarCon(loop)) ≤ 1

Example (Cost of Operations)

For unary integers $: + \in Lin, \times \in Pol \text{ and } pow \in PR$ For binary integers $: + \in Lin, \times \in Lin \text{ and } pow \in Pol$