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The standard model of Arithmetic is

N = (ω,+,×, 0, 1,≤).

TA = Th(N) = True Arithmetic

TAn = TA ∩ Πn

Our concern: TA2 and its models.
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Two comments about TA2:
1. Matijasavic’s Theorem =⇒

TA2 = TA ∩ ∀∃.
2. If N is a model of TA2 andM⊆ N ,

thenM |= TA2 iff M closed under all
computable functions.

If N |= TA2, then

L(N ) = {M ⊆ N :M |= TA2}.

Hence, L(N ) is a complete lattice.
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L(N ) is a complete lattice.

Definition/Theorem: N is a Nerode semiring iff
N is finitely generated.

Tom McLaughlin, 2010:
“Some observations on the substructure lattice of a ∆1-ultrapower”

∆1-ultrapower ! Nerode semiring.

What are the possible lattices L(N )

for N a Nerode semiring?
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If N |= PA, then

Lt(N ) = {M ⊆ N :M 4 N}.

If N |= TA2, then

L(N ) = {M ⊆ N :M |= TA2}.

What are the possible finite lattices
L(N ) for N a Nerode semiring?
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Theorem: If L is a finite lattice, then the following are
equivalent:
(1) There is a Nerode semiring N such that L(N ) ∼= L.
(2) There is L1 such that L ∼= 2⊕ L1 and L1 has n-CPP

representations for all n < ω.

What’s all this mean?

CPP = Canonical Partition Property

Lots of finite lattices have n-CPP representations for all
n < ω. All distributive lattices do and many others are
known to have. Possibly, every finite lattice does.

Jim Schmerl (with Volodya Shavrukov)Submodel Lattices of Nerode Semirings June 2014 JAF33 6 / 12



Theorem: If L is a finite lattice, then the following are
equivalent:
(1) There is a Nerode semiring N such that L(N ) ∼= L.
(2) There is L1 such that L ∼= 2⊕ L1 and L1 has n-CPP

representations for all n < ω.

————

If L is a finite lattice, L ∼= 2⊕ L1 and L1 has n-CPP
representations for all n < ω, then there is N |= PA such
that Lt(N ) ∼= L.

In fact, we can get N |= TA.

These are not the only finite L - for example, any
distributive L works.
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Theorem: Suppose that N |= TA2.

If N has at least 2 nonstandard skies, then
0′′ ∈ SSy(N ).

If 0′′ ∈ SSy(N ), then
I the skies of N are densely ordered;
I for all possible finite L, there isM∈ L(N )

such that L(M) ∼= L;
I N has infinitely many atoms.

Lemma: If N |=TA2 andM1,M2 ⊆ N are Nerode
semirings cofinal in N , thenM1 ∩M2 is cofinal in N .
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What are the possible chains L(N ) for
N a Nerode semiring?

Theorem: If L is a (possibly infinite) chain, then the
following are equivalent:

(1) There is a Nerode semiring N such that L(N ) ∼= L.
(2) L is complete, has a coatom and has at most countably

many immediate successors, and every element is the
sup of those immediate successors below it.
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Definition: M |=TA2 is existentially closed (e.c.) if
wheneverM⊆ N |=TA2, thenM≺1 N .

Joram Hirschfeld & William H. Wheeler, 1975:
“Forcing, arithmetic, division rings." (especially Part 2)

Are there e.c. models of TA2? Yes

Are there e.c.Nerode semirings? Yes

Σ1-ultrapower ! e.c.Nerode semiring.
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What are the possible lattices L(N )

for N an e.c.Nerode semiring?

Theorem: If N is an e.c.Nerode semiring, then N
has a single nonstandard sky (i.e. 0′′ 6∈SSy(N )).

Theorem: If L is a chain and there is a Nerode
semiring N such that L(N ) ∼= L, then there is an
e.c.Nerode semiring N such that L(N ) ∼= L.

Theorem: There is an e.c.Nerode semiring such
that L(N ) ∼= 2⊕B3.
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Tack så mycket
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