Submodel Lattices of Nerode Semirings

Jim Schmerl

(with Volodya Shavrukov)

June 2014 JAF33

JIM SCNMETI (with Volodya S Submodel Lattices of Nerode Semirings June 2014 JAF33

014 JAF33 1 / 12

The standard model of Arithmetic is

$$\mathbb{N} = (\omega, +, \times, 0, 1, \leq).$$

$TA = Th(\mathbb{N}) = True Arithmetic$ $TA_n = TA \cap \Pi_n$

Our concern: TA_2 and its models.

JIM SCNMERI (with Volodya S Submodel Lattices of Nerode Semirings

Two comments about TA₂: 1. *Matijasavic's Theorem* \implies TA₂ = TA $\cap \forall \exists$. 2. If \mathcal{N} is a model of TA₂ and $\mathcal{M} \subseteq \mathcal{N}$, then $\mathcal{M} \models$ TA₂ iff M closed under all computable functions.

If $\mathcal{N} \models \mathsf{TA}_2$, then

 $\mathcal{L}(\mathcal{N}) = \{\mathcal{M} \subseteq \mathcal{N} : \mathcal{M} \models \mathsf{TA}_2\}.$

Hence, $\mathcal{L}(\mathcal{N})$ is a complete lattice.

JIM SCNMEII (with Volodya S Submodel Lattices of Nerode Semirings

 $\mathcal{L}(\mathcal{N})$ is a complete lattice.

Definition/Theorem: \mathcal{N} is a Nerode semiring iff \mathcal{N} is finitely generated.

Tom McLaughlin, 2010: "Some observations on the substructure lattice of a Δ_1 -ultrapower"

 Δ_1 -ultrapower $\leftrightarrow \rightarrow$ Nerode semiring.

What are the possible lattices
$$\mathcal{L}(\mathcal{N})$$
 for \mathcal{N} a Nerode semiring?

June 2014 JAF33 4 / 12

If $\mathcal{N} \models \mathsf{PA}$, then $\mathsf{Lt}(\mathcal{N}) = \{\mathcal{M} \subseteq \mathcal{N} : \mathcal{M} \preccurlyeq \mathcal{N}\}.$

If $\mathcal{N} \models \mathsf{TA}_2$, then

$$\mathcal{L}(\mathcal{N}) = \{\mathcal{M} \subseteq \mathcal{N} : \mathcal{M} \models \mathsf{TA}_2\}.$$

What are the possible finite lattices $\mathcal{L}(\mathcal{N})$ for \mathcal{N} a Nerode semiring?

Theorem: If *L* is a finite lattice, then the following are equivalent:

There is a Nerode semiring N such that L(N) ≅ L.
There is L₁ such that L ≅ 2 ⊕ L₁ and L₁ has n-CPP representations for all n < ω.

What's all this mean?

CPP = Canonical Partition Property

Lots of finite lattices have *n*-CPP representations for all $n < \omega$. All distributive lattices do and many others are known to have. Possibly, every finite lattice does.

Theorem: If *L* is a finite lattice, then the following are equivalent:

There is a Nerode semiring N such that L(N) ≅ L.
There is L₁ such that L ≅ 2 ⊕ L₁ and L₁ has n-CPP representations for all n < ω.

If *L* is a finite lattice, $L \cong \mathbf{2} \oplus L_1$ and L_1 has *n*-CPP representations for all $n < \omega$, then there is $\mathcal{N} \models PA$ such that $Lt(\mathcal{N}) \cong L$.

In fact, we can get $\mathcal{N} \models \mathsf{TA}$.

These are not the only finite *L* - for example, any distributive *L* works.

Theorem: Suppose that $\mathcal{N} \models TA_2$.

- If \mathcal{N} has at least 2 nonstandard skies, then $0'' \in SSy(\mathcal{N})$.
- If $0'' \in SSy(\mathcal{N})$, then
 - the skies of $\mathcal N$ are densely ordered;
 - for all possible finite L, there is M ∈ L(N) such that L(M) ≅ L;
 - \mathcal{N} has infinitely many atoms.

Lemma: If $\mathcal{N} \models TA_2$ and $\mathcal{M}_1, \mathcal{M}_2 \subseteq \mathcal{N}$ are Nerode semirings cofinal in \mathcal{N} , then $\mathcal{M}_1 \cap \mathcal{M}_2$ is cofinal in \mathcal{N} .

What are the possible chains $\mathcal{L}(\mathcal{N})$ for \mathcal{N} a Nerode semiring?

Theorem: If *L* is a (possibly infinite) chain, then the following are equivalent:

There is a Nerode semiring N such that L(N) ≅ L.
L is complete, has a coatom and has at most countably many immediate successors, and every element is the sup of those immediate successors below it.

Definition: $\mathcal{M} \models TA_2$ is existentially closed (e.c.) if whenever $\mathcal{M} \subseteq \mathcal{N} \models TA_2$, then $\mathcal{M} \prec_1 \mathcal{N}$.

Joram Hirschfeld & William H. Wheeler, 1975: "Forcing, arithmetic, division rings." (especially Part 2)

Are there e.c. models of TA_2 ? Yes

Are there e.c. Nerode semirings? Yes

 Σ_1 -ultrapower $\leftrightarrow \rightarrow$ e.c. Nerode semiring.

What are the possible lattices $\mathcal{L}(\mathcal{N})$ for \mathcal{N} an e.c. Nerode semiring?

- Theorem: If \mathcal{N} is an e.c. Nerode semiring, then \mathcal{N} has a single nonstandard sky (i.e. $0'' \notin SSy(\mathcal{N})$).
- Theorem: If L is a chain and there is a Nerode semiring \mathcal{N} such that $\mathcal{L}(\mathcal{N}) \cong L$, then there is an e.c. Nerode semiring \mathcal{N} such that $\mathcal{L}(\mathcal{N}) \cong L$.
- Theorem: There is an e.c. Nerode semiring such that $\mathcal{L}(\mathcal{N}) \cong \mathbf{2} \oplus \mathbf{B}_3$.

June 2014 JAF33

11 / 12

Tack så mycket

JIM SCNMERI (with Volodya S Submodel Lattices of Nerode Semirings June 2014 JAF33 12 / 12

< 17 ►

A B A A B A

æ