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The following are equivalent for M = PA™.
(a) M = BX; + exp.

(b) M expands to (M, Z") = WKLg.
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BX; + exp and WKL,

Conservation Theorem (SSDP)

The following are equivalent for M = PA™.
(a) M = BX; + exp.

(b) M expands to (M, Z") = WKLg.

BY; consists of PA™ and 1st order
> Ag-induction (1Ag); M
» Y i-collection.

WKL consists of extensionality, PA", and W
> Yg-induction (IXJ); arithmetic
» totality of exponentiation (exp); RCAg

» A9-comprehension (A9-CA); and
» Weak Konig Lemma (WKL), i.e., every unbounded binary tree
has an unbounded path.




The Conservation Theorem

Conservation Theorem (SSDP)

The following are equivalent for M = PA™.
(a) M = BX; + exp.

(b) M expands to (M, Z") = WKLg.

Proof
(Simpson—Smith 1986) WKLS F BX1 + exp.

(Folklore) If M |=1A¢ + exp has a proper end extension
K = 1A, then (M,SSypy(K)) E WKLg.

(Dimitracopoulos—Paschalis) Every M |= BX; + exp has a proper
end extension K = [Ay. O

Remark
Simpson and Smith proved this for countable M using forcing.



Arithmetized Completeness Theorem

Theorem (Simpson)
The following are equivalent over RCAg.
(a) WKL.

(b) Godel's Completeness Theorem, i.e., every consistent theory in
first-order logic has a model.

Arithmetized Completeness Theorem for WKL,

Let (M, Z") =WKLg and T 2 PA™ be a theory coded in (M, Z").
If (M, Z") = Con(T), then there is K = T end extending M.
Theorem (Dimitracopoulos—Paschalis)

Every M |= BX; + exp has a proper end extension K |= 1Ag.

Theorem (Wilkie—Paris 1987)
BX; + exp - TabCon(lAy).



Cuts in models of Peano

[ Mi-overspill at N ]

Theorem (Kirby—Paris 1978, Enayat-W) /

Let M = 1Ag + exp that is short [1;-recursively saturated.
Then the following are equivalent.

(a) M E BX; + M- Th(PA).
(b) M has a proper end extension K = PA.

Proof (essentially in Mc Aloon 1978)
» Expand M to (M, 2") = WKLy.

» Reflection implies PA - Con(I%,) for every n € N.
» So M [= Con(IX,) for every n € N.
» Overspill implies M |= Con(I%,) for some v > N.
» There is K = 1X, O PA end extending M. O



Coded sets

Theorem (Dimitracopoulos—Paschalis), rephrased
The following are equivalent for M = 1Ag + exp.
(a) M = Bx;.

(b) M has a proper end extension K = 1Ay.

Theorem (Enayat-W)

The following are equivalent for a countable (M, 2") = RCAg.

(a) (M, 2) E WKLE.

(b) M has a proper end extension K = |Ag where SSy,(K) = Z .

Proof
A standard overspill argument shows (b) = (a).



End extending M to K = 1A, with SSy,(K) = 2

end

M Ko |= 10

|=

K1 = “do codes Dy”
—\<

K> = "dq codes D"

|=

Ks = “dy codes Dy"

|

end

(M, 2°) = WKL} 4 TabCon(1Ap)

where 2" ={D, : n € N} ;(*U K
— UneN ''n

[(I\/l, Z") = TabCon(ElemDiag(K,) + “d, codes Dn”)]

O



Completions of PA

Theorem (Kirby—Paris 1978, Enayat-W)

Let M |=1Ag + exp that is short [1;-recursively saturated.
Then the following are equivalent.

(a) M E BX; + M- Th(PA).
(b) M has a proper end extension K = PA.

Theorem (Wilkie 1977, Enayat-W)

Let M = 1Ag + exp that is short [1;-recursively saturated.
The following are equivalent for a complete consistent T O PA.

(a) MEBEX1+(MiNT)and (M,N T) e SSy(M) for all n € N.
(b) M has a proper end extension K = T.

Proof
(b) = (a) is a simple application of the Satp,’s.



End extending M to K = T following Lessan and Schmerl

end

M Ko):nlﬂT+|Ao+eXp
[

Kil=Man T

Jm

K> ):|_|3ﬂ T

"

K3 ):I'I4ﬂ T

In

end

T DPA
(M, N T) € SSy(M)
(M, 2) EWKL; + (M1 N T) K=UpnKn ET

[M Ce Ko = Con(M,y-Diag(-) + (Mps1 N T)) € Mpyq N T] O




Further applications

[ satisfied if M = 155 ]

Theorem (Enayat-W) /

Let M = BX; + exp be nonstandard and short (2 U [1;)-rec. sat.
The following are equivalent for a complete consistent T O PA.

(a) M=N,N T and (M, N T) € SSy(M) for all n € N,
(b) M has arbitrarily large initial segments I = T.

Theorem (Schmerl 2014)
The following are equivalent for a countable (M, 2") = RCAg.
(a) (M, Z) =WKLg and 2" D Def(M).

(b) 2 =SSy (K) for some K = M. parametrically
definable sets




Finding K = M with SSy,,(K) = 2" following Kaufmann

My, end
M

Ko = 1A + exp
m

K1 = "dp codes Dy"
e

Ky = “di codes D"
|

K3 = "da codes Dy"
[ e

I'I3,end

M4, end

(M, 27) = WKLY + PA
with 2 = {D, : n € N} D Def(M) K = Upen Kn

(Kn 1,2 M = Con(My.1- Diag(-) + May3- Diag(M)) € My |




Summary

Conservation Theorem (SSDP)

The following are equivalent for M = PA™.
(a) M | By + exp.

(b) M expands to (M, 27) = WKLg.

is useful for
(1) iterating Arithmetized-Completeness-Theorem constructions;

(2) controlling subsets coded in end extensions.

Questions
(i) Can we still pass on to second-order arithmetic without exp?

(i) How necessary is PA in our theorems/arguments?
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