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This talk

Conservation Theorem (SSDP)

The following are equivalent for M |= PA−.

(a) M |= BΣ1 + exp.

(b) M expands to (M,X ) |= WKL∗0.
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BΣ1 + exp and WKL∗0

Conservation Theorem (SSDP)

The following are equivalent for M |= PA−.

(a) M |= BΣ1 + exp.

(b) M expands to (M,X ) |= WKL∗0.

BΣ1 consists of PA− and 1st order
arithmeticI ∆0-induction (I∆0);

I Σ1-collection.

WKL∗0 consists of extensionality, PA−, and 2nd order
arithmeticI Σ0

0-induction (IΣ0
0);

I totality of exponentiation (exp);

I ∆0
1-comprehension (∆0

1-CA); and

I Weak König Lemma (WKL), i.e., every unbounded binary tree
has an unbounded path.

RCA∗0



The Conservation Theorem

Conservation Theorem (SSDP)

The following are equivalent for M |= PA−.

(a) M |= BΣ1 + exp.

(b) M expands to (M,X ) |= WKL∗0.

Proof

(Simpson–Smith 1986) WKL∗0 ` BΣ1 + exp.

(Folklore) If M |= I∆0 + exp has a proper end extension
K |= I∆0, then (M, SSyM(K )) |= WKL∗0.

(Dimitracopoulos–Paschalis) Every M |= BΣ1 + exp has a proper
end extension K |= I∆0.

Remark
Simpson and Smith proved this for countable M using forcing.



Arithmetized Completeness Theorem

Theorem (Simpson)

The following are equivalent over RCA∗0.

(a) WKL.

(b) Gödel’s Completeness Theorem, i.e., every consistent theory in
first-order logic has a model.

Arithmetized Completeness Theorem for WKL∗0
Let (M,X ) |= WKL∗0 and T ⊇ PA− be a theory coded in (M,X ).
If (M,X ) |= Con(T ), then there is K |= T end extending M.

Theorem (Dimitracopoulos–Paschalis)

Every M |= BΣ1 + exp has a proper end extension K |= I∆0.

Theorem (Wilkie–Paris 1987)

BΣ1 + exp ` TabCon(I∆∗0).



Cuts in models of Peano

Theorem (Kirby–Paris 1978, Enayat–W)

Let M |= I∆0 + exp that is short Π1-recursively saturated.

Π1-overspill at N

Then the following are equivalent.

(a) M |= BΣ1 + Π1- Th(PA).

(b) M has a proper end extension K |= PA.

Theorem (Dimitracopoulos–Paschalis)

Every M |= BΣ1 + exp has a proper end extension K |= I∆0.

Proof (essentially in Mc Aloon 1978)

I Expand M to (M,X ) |= WKL∗0.

I Reflection implies PA ` Con(IΣn) for every n ∈ N.

I So M |= Con(IΣn) for every n ∈ N.

I Overspill implies M |= Con(IΣν) for some ν > N.

I There is K |= IΣν ⊇ PA end extending M.



Coded sets

Theorem (Dimitracopoulos–Paschalis , rephrased)

The following are equivalent for M |= I∆0 + exp.

(a) M |= BΣ1.

(b) M has a proper end extension K |= I∆0.

Theorem (Enayat–W)

The following are equivalent for a countable (M,X ) |= RCA∗0.

(a) (M,X ) |= WKL∗0.

(b) M has a proper end extension K |= I∆0 where SSyM(K ) = X .

Proof
A standard overspill argument shows (b)⇒ (a).



End extending M to K |= I∆0 with SSyM(K ) = X

(M,X ) |= WKL∗0 + TabCon(I∆∗0)

where X = {Dn : n ∈ N}

M K0 |= I∆0
end

K1 |= “d0 codes D0”

end 4

K2 |= “d1 codes D1”

end

4

K3 |= “d2 codes D2”

end

4

...

4

...

...

K =
⋃

n∈N Kn

end

(M,X ) |= TabCon(ElemDiag(Kn) + “dn codes Dn”)



Completions of PA

Theorem (Kirby–Paris 1978, Enayat–W)

Let M |= I∆0 + exp that is short Π1-recursively saturated.
Then the following are equivalent.

(a) M |= BΣ1 + Π1- Th(PA).

(b) M has a proper end extension K |= PA.

Theorem (Wilkie 1977, Enayat–W)

Let M |= I∆0 + exp that is short Π1-recursively saturated.
The following are equivalent for a complete consistent T ⊇ PA.

(a) M |= BΣ1 + (Π1 ∩ T ) and (Πn ∩ T ) ∈ SSy(M) for all n ∈ N.

(b) M has a proper end extension K |= T .

Proof
(b)⇒ (a) is a simple application of the SatΠn ’s.



End extending M to K |= T following Lessan and Schmerl

T ⊇ PA

(Πn ∩ T ) ∈ SSy(M)

(M,X ) |= WKL∗0 + (Π1 ∩ T )

M K0 |= Π1 ∩ T + I∆0 + exp
end

K1 |= Π2 ∩ T

end
Π0

K2 |= Π3 ∩ T

end

Π1

K3 |= Π4 ∩ T

end

Π2

...

Π3

...

...

K =
⋃

n∈N Kn |= T

end

M ⊆e Kn |= Con
(
Πn- Diag(·) + (Πn+1 ∩ T )

)
∈ Πn+1 ∩ T



Further applications

Theorem (Enayat–W)

Let M |= BΣ1 + exp be nonstandard and short (Σ1 ∪ Π1)-rec. sat.

satisfied if M |= IΣ1

The following are equivalent for a complete consistent T ⊇ PA.

(a) M |= Π2 ∩ T and (Πn ∩ T ) ∈ SSy(M) for all n ∈ N.

(b) M has arbitrarily large initial segments I |= T .

Theorem (Schmerl 2014)

The following are equivalent for a countable (M,X ) |= RCA∗0.

(a) (M,X ) |= WKL∗0 and X ⊇ Def(M).

parametrically
definable sets

(b) X = SSyM(K ) for some K �e M.



Finding K <e M with SSyM(K ) = X following Kaufmann

(M,X ) |= WKL∗0 + PA

with X = {Dn : n ∈ N} ⊇ Def(M)

M K0 |= I∆0 + exp
Π2, end

K1 |= “d0 codes D0”

Π3, end Π1

K2 |= “d1 codes D1”

Π4, end

Π2

K3 |= “d2 codes D2”

Π5, end

Π3

...

Π4

...

...

K =
⋃

n∈N Kn

4, end

Kn <Πn+2 M |= Con
(
Πn+1- Diag(·) + Πn+3- Diag(M)

)
∈ Πn+2



Summary

Conservation Theorem (SSDP)

The following are equivalent for M |= PA−.

(a) M |= BΣ1 + exp.

(b) M expands to (M,X ) |= WKL∗0.

is useful for

(1) iterating Arithmetized-Completeness-Theorem constructions;

(2) controlling subsets coded in end extensions.

Questions

(i) Can we still pass on to second-order arithmetic without exp?

(ii) How necessary is PA in our theorems/arguments?
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