Understanding $B\Sigma_1 + exp$ via WKL_0^*

Tin Lok Wong

Kurt Gödel Research Center for Mathematical Logic Vienna, Austria

Joint work with Ali Enayat (Gothenburg)

18 June, 2014

Financial support from FWF Project P24654-N25 is acknowledged.

This talk

Conservation Theorem (SSDP)

The following are equivalent for $M \models PA^-$.

- (a) $M \models \mathsf{B}\Sigma_1 + \exp$.
- (b) M expands to $(M, \mathscr{X}) \models \mathsf{WKL}_0^*$.

Plan

- 1. Introduction
- 2. Arithmetized-Completeness-Theorem constructions
- 3. Arithmetized-Completeness-Theorem constructions iterated
- 4. Conclusion

$\mathsf{B}\Sigma_1 + \mathsf{exp}$ and $\mathsf{W}\mathsf{K}\mathsf{L}^*_0$

Conservation Theorem (SSDP)

The following are equivalent for $M \models PA^-$.

- (a) $M \models \mathsf{B}\Sigma_1 + \exp$.
- (b) M expands to $(M, \mathscr{X}) \models \mathsf{WKL}_0^*$.
- $\mathsf{B}\Sigma_1$ consists of $\mathsf{P}\mathsf{A}^-$ and
 - Δ_0 -induction $(I\Delta_0)$;
 - Σ₁-collection.
- WKL^*_0 consists of extensionality, PA^- , and
 - Σ_0^0 -induction $(I\Sigma_0^0)$;
 - totality of exponentiation (exp);
 - Δ_1^0 -comprehension (Δ_1^0 -CA); and
 - Weak König Lemma (WKL), i.e., every unbounded binary tree has an unbounded path.

1st order arithmetic 2nd order arithmetic RCA₀

The Conservation Theorem

Conservation Theorem (SSDP)

The following are equivalent for $M \models PA^-$.

(a)
$$M \models \mathsf{B}\Sigma_1 + \exp$$
.

(b)
$$M$$
 expands to $(M, \mathscr{X}) \models \mathsf{WKL}_0^*$.

Proof

 $\begin{array}{ll} (\mathsf{Simpson-Smith 1986}) & \mathsf{WKL}_0^* \vdash \mathsf{B}\Sigma_1 + \mathsf{exp.} \\ (\mathsf{Folklore}) & \mathsf{If } M \models \mathsf{I}\Delta_0 + \mathsf{exp has a proper end extension} \\ & \mathcal{K} \models \mathsf{I}\Delta_0, \ \mathsf{then} \ (M, \mathsf{SSy}_M(\mathcal{K})) \models \mathsf{WKL}_0^*. \end{array}$

(Dimitracopoulos–Paschalis) Every $M \models B\Sigma_1 + \exp$ has a proper end extension $K \models I\Delta_0$.

Remark

Simpson and Smith proved this for *countable M* using forcing.

Arithmetized Completeness Theorem

Theorem (Simpson)

The following are equivalent over RCA₀^{*}.

- (a) WKL.
- (b) Gödel's Completeness Theorem, i.e., every consistent theory in first-order logic has a model.

Arithmetized Completeness Theorem for WKL₀^{*} Let $(M, \mathscr{X}) \models WKL_0^*$ and $T \supseteq PA^-$ be a theory coded in (M, \mathscr{X}) . If $(M, \mathscr{X}) \models Con(T)$, then there is $K \models T$ end extending M.

Theorem (Dimitracopoulos-Paschalis)

Every $M \models \mathsf{B}\Sigma_1 + \mathsf{exp}$ has a proper end extension $K \models \mathsf{I}\Delta_0$.

Theorem (Wilkie–Paris 1987) $B\Sigma_1 + exp \vdash TabCon(I\Delta_0^*).$

Cuts in models of Peano

$\Pi_1\text{-}overspill$ at $\mathbb N$

Theorem (Kirby–Paris 1978, Enayat–W)

Let $M \models I\Delta_0 + exp$ that is short Π_1 -recursively saturated. Then the following are equivalent.

(a)
$$M \models \mathsf{B}\Sigma_1 + \Pi_1 - \mathsf{Th}(\mathsf{PA})$$
.

(b) *M* has a proper end extension $K \models PA$.

Proof (essentially in Mc Aloon 1978)

- Expand *M* to $(M, \mathscr{X}) \models \mathsf{WKL}_0^*$.
- Reflection implies $PA \vdash Con(I\Sigma_n)$
- So $M \models Con(I\Sigma_n)$

- for every $n \in \mathbb{N}$.
- for every $n \in \mathbb{N}$.

• Overspill implies $M \models \text{Con}(|\Sigma_{\nu})$

- for some $\nu > \mathbb{N}$.
- There is $K \models I\Sigma_{\nu} \supseteq PA$ end extending M.

Coded sets

Theorem (Dimitracopoulos–Paschalis), rephrased The following are equivalent for $M \models I\Delta_0 + \exp$. (a) $M \models B\Sigma_1$. (b) M has a proper end extension $K \models I\Delta_0$.

Theorem (Enayat–W)

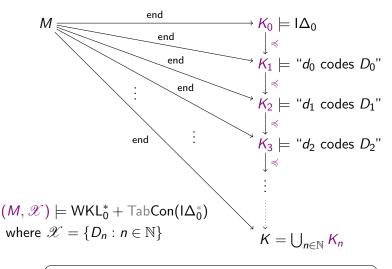
The following are equivalent for a countable $(M, \mathscr{X}) \models \mathsf{RCA}_0^*$. (a) $(M, \mathscr{X}) \models \mathsf{WKL}_0^*$.

(b) *M* has a proper end extension $K \models I\Delta_0$ where $SSy_M(K) = \mathscr{X}$.

Proof

A standard overspill argument shows (b) \Rightarrow (a).

End extending *M* to $K \models I\Delta_0$ with $SSy_M(K) = \mathscr{X}$



 $((M, \mathscr{X}) \models \mathsf{TabCon}(\mathsf{ElemDiag}(K_n) + "d_n \text{ codes } D_n"))$

Completions of PA

Theorem (Kirby–Paris 1978, Enayat–W)

Let $M \models I\Delta_0 + exp$ that is short Π_1 -recursively saturated. Then the following are equivalent.

(a) $M \models \mathsf{B}\Sigma_1 + \Pi_1 - \mathsf{Th}(\mathsf{PA}).$

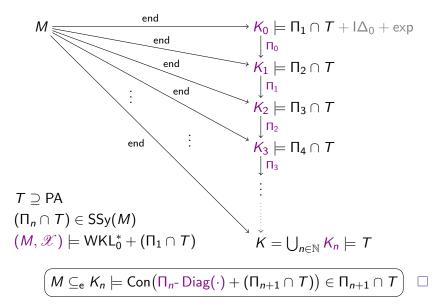
(b) *M* has a proper end extension $K \models PA$.

Theorem (Wilkie 1977, Enayat–W)

Let $M \models |\Delta_0 + \exp$ that is short Π_1 -recursively saturated. The following are equivalent for a complete consistent $T \supseteq PA$. (a) $M \models B\Sigma_1 + (\Pi_1 \cap T)$ and $(\Pi_n \cap T) \in SSy(M)$ for all $n \in \mathbb{N}$. (b) M has a proper end extension $K \models T$.

$\begin{array}{l} \mbox{Proof} \\ \mbox{(b)} \Rightarrow \mbox{(a)} \mbox{ is a simple application of the } Sat_{\Pi_n}\mbox{'s.} \end{array}$

End extending M to $K \models T$ following Lessan and Schmerl



Further applications

Theorem (Enayat–W)

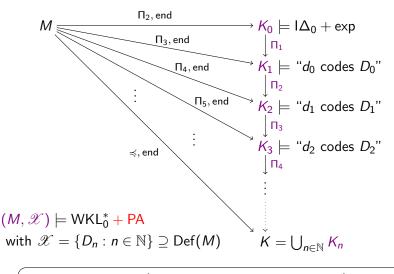
Let $M \models B\Sigma_1 + \exp$ be nonstandard and short $(\Sigma_1 \cup \Pi_1)$ -rec. sat. The following are equivalent for a complete consistent $T \supseteq PA$. (a) $M \models \Pi_2 \cap T$ and $(\Pi_n \cap T) \in SSy(M)$ for all $n \in \mathbb{N}$. (b) M has arbitrarily large initial segments $I \models T$.

satisfied if $M \models I\Sigma_1$

Theorem (Schmerl 2014)

The following are equivalent for a countable $(M, \mathscr{X}) \models \mathsf{RCA}_0^*$. (a) $(M, \mathscr{X}) \models \mathsf{WKL}_0^*$ and $\mathscr{X} \supseteq \mathsf{Def}(M)$. (b) $\mathscr{X} = \mathsf{SSy}_M(K)$ for some $K \succeq_{\mathsf{F}} M$. parametrically definable sets

Finding $K \succ_{e} M$ with $SSy_{M}(K) = \mathscr{X}$ following Kaufmann



 $K_n \succcurlyeq_{\Pi_{n+2}} M \models \operatorname{Con}(\Pi_{n+1} \operatorname{-} \operatorname{Diag}(\cdot) + \Pi_{n+3} \operatorname{-} \operatorname{Diag}(M)) \in \Pi_{n+2}$

Summary

Conservation Theorem (SSDP) The following are equivalent for $M \models PA^-$. (a) $M \models B\Sigma_1 + exp$. (b) M expands to $(M, \mathscr{X}) \models WKL_0^*$.

is useful for

- (1) iterating Arithmetized-Completeness-Theorem constructions;
- (2) controlling subsets coded in end extensions.

Questions

- (i) Can we still pass on to second-order arithmetic without exp?
- (ii) How necessary is PA in our theorems/arguments?