Use of nonstandard models in Reverse Mathematics

Keita Yokoyama

Japan Advanced Institute of Science and Technology

June 17, 2014, JAF33

What is Reverse Mathematics?

Hilbert's reductionism program (1920s):

Find a good axiomatic system T for the entire mathematics, and prove the 'consistency of T' by a 'finitistic method'.

• This program failed because of Gödel's incompleteness theorem (1930).

- \Rightarrow Which axioms are exactly needed for mathematics?
- ⇒ Reverse Mathematics
- H. Friedman's theme (1976):

very often, if a theorem τ of ordinary mathematics is proved from the "right" axioms, then τ is equivalent to those axioms over some weaker system in which itself is not provable.

What is Reverse Mathematics?

Hilbert's reductionism program (1920s):

Find a good axiomatic system T for the entire mathematics, and prove the 'consistency of T' by a 'finitistic method'.

- This program failed because of Gödel's incompleteness theorem (1930).
- \Rightarrow Which axioms are exactly needed for mathematics?
- ⇒ Reverse Mathematics

H. Friedman's theme (1976):

very often, if a theorem τ of ordinary mathematics is proved from the "right" axioms, then τ is equivalent to those axioms over some weaker system in which itself is not provable.

What is Reverse Mathematics?

Hilbert's reductionism program (1920s):

Find a good axiomatic system T for the entire mathematics, and prove the 'consistency of T' by a 'finitistic method'.

- This program failed because of Gödel's incompleteness theorem (1930).
- \Rightarrow Which axioms are exactly needed for mathematics?
- ⇒ Reverse Mathematics

H. Friedman's theme (1976):

very often, if a theorem τ of ordinary mathematics is proved from the "right" axioms, then τ is equivalent to those axioms over some weaker system in which itself is not provable.

What is Reverse Mathematics?

Hilbert's reductionism program (1920s):

Find a good axiomatic system T for the entire mathematics, and prove the 'consistency of T' by a 'finitistic method'.

- This program failed because of Gödel's incompleteness theorem (1930).
- \Rightarrow Which axioms are exactly needed for mathematics?

\Rightarrow Reverse Mathematics

H. Friedman's theme (1976):

very often, if a theorem τ of ordinary mathematics is proved from the "right" axioms, then τ is equivalent to those axioms over some weaker system in which itself is not provable.

What is Reverse Mathematics?

Reverse Mathematics program (Friedman Simpson program)

- Formalize the theorem τ of "core of math" within an appropriate axiomatic system.
- 2 Find the weakest axiom T in which we can prove τ .
- Classify "core of math" using the logical strength.
 ("core of math": basic theorems of analysis, algebra, geometry, etc.)

Study the strength of various theorems by this method.

What is Reverse Mathematics?

Reverse Mathematics program (Friedman Simpson program)

- Formalize the theorem τ of "core of math" within an appropriate axiomatic system.
- 2 Find the weakest axiom T in which we can prove τ .
- Classify "core of math" using the logical strength.
 ("core of math": basic theorems of analysis, algebra, geometry, etc.)

Study the strength of various theorems by this method.

language of second order arithmetic (\mathcal{L}_2)

Definition (language of second order arithmetic)

number variables:x, y, z, ...constant symbols:0, 1relation symbols: $=, <, \in$ set variables:X, Y, Z, ... function symbols: $+, \cdot$

Classes of formulas

bounded formula: all quantifiers are of the form $\forall x < y, \exists x < y$.

arithmetical formulas:(θ : bounded formula) Σ_n^0 formula: $\exists x_1 \forall x_2 \dots x_n \theta$ Π_n^0 formula: $\forall x_1 \exists x_2 \dots x_n \theta$

analytic formula:(φ : arithmetical formula) Σ_n^1 formula: $\exists X_1 \forall X_2 \dots X_n \varphi$ Π_n^1 formula: $\forall X_1 \exists X_2 \dots X_n \varphi$

Induction axioms

•
$$\Sigma_{j}^{i}$$
 induction $(I\Sigma_{j}^{i})$: for any $\varphi(x) \in \Sigma_{j}^{i}$,
 $\varphi(0) \land \forall x(\varphi(x) \rightarrow \varphi(x+1)) \rightarrow \forall x\varphi(x)$.
• Δ_{j}^{i} induction $(I\Delta_{j}^{i})$: for any $\varphi(x) \in \Sigma_{j}^{i}$ and $\psi(x) \in \Pi_{j}^{i}$,
 $\forall x(\varphi(x) \leftrightarrow \psi(x)) \rightarrow (\varphi(0) \land \forall x(\varphi(x) \rightarrow \varphi(x+1)) \rightarrow \forall x\varphi(x))$.
• Σ_{j}^{i} bounding $(B\Sigma_{j}^{i})$: for any $\varphi(x, y) \in \Sigma_{j}^{i}$,
 $\forall x < u \exists y\varphi(x, y) \rightarrow \exists v \forall x < u \exists y < v\varphi(x, y)$.
Note that $B\Sigma_{j+1}^{0} = I\Delta_{j}^{0}$ over $I\Sigma_{1}^{0}$. (Slaman 2004)

Comprehension axioms

- $\Sigma_j^i (\Pi_j^i)$ comprehension: for any $\varphi(x) \in \Sigma_j^i$, $\exists X \forall x (\varphi(x) \leftrightarrow x \in X).$
- Δ_j^i comprehension: for any $\varphi(x) \in \Sigma_j^i$ and $\psi(x) \in \Pi_j^i$, $\forall x(\varphi(x) \leftrightarrow \psi(x)) \rightarrow \exists X \forall x(\varphi(x) \leftrightarrow x \in X).$
- weak König's lemma:

for any infinite tree $T \subseteq 2^{<\mathbb{N}}$, $\exists X \forall n(X[n] \in T)$, where $X[n] = \langle X(0), \dots, X(n-1) \rangle$.

Subsystems of second-order arithmetic

Big five plus one

- RCA₀: "discrete ordered semi-ring"+ Σ_1^0 induction + Δ_1^0 comprehension.
- WWKL₀: RCA₀ + weak weak König's lemma.
- WKL₀: RCA₀ + weak König's lemma.
- ACA₀: RCA₀ + Σ_0^1 comprehension.
- ATR₀: RCA₀ + arithmetical transfinite recursion.
- $\Pi_1^1 CA_0$: RCA₀ + Π_1^1 comprehension.

Subsystems of second-order arithmetic

Big five plus one

- RCA₀: In this system, we need to prove everything "recursively".
- WWKL₀: We can use the notion of measure for closed set.
- WKL₀: We can use Σ⁰₁-separation, or we can use Hiene/Borel compactness.
- ACA₀: We can use number quantifier freely, or we can use sequential compactness.
- ATR₀: We can compare well orderings.
- $\Pi_1^1 CA_0$: We can check well-foundedness.

Reverse Mathematics

Theorem

The following are provable within RCA₀.

- The structure theorem for finitely generated abelian group.
- Mean value theorem.
- Implicit function theorem.
- Taylor's expansion theorem for holomorphic function.
- Baire Category theorem.
- **(6)** The Riemann mapping theorem for a polygonal region.

Reverse Mathematics

Theorem

9

The following are equivalent over RCA₀.

- WKL₀.
- 2 Hiene Borel compactness for [0, 1].
- ③ Completeness theorem/ compactness theorem.
- Uniqueness of algebraic closures of a countable field.
- Every continuous function on [0, 1] has a maximum.
- The Jordan–Schönflies theorem.
- The Cauchy integral theorem.
- The Riemann mapping theorem for a Jordan region.

Reverse Mathematics

Theorem

1

The following are equivalent over RCA₀.

- ACA₀.
- **2** Ramsey's theorem: RT^n for $n \ge 3$.
- Severy countable countable vector space has a basis.
- ④ Every countable commutative ring has a maximal ideal.
- Arzela/Ascoli's theorem.
- 5 The Riemann mapping theorem (over WKL₀).

We will check the strength of various theorems in this wa

Reverse Mathematics

Theorem

1

The following are equivalent over RCA₀.

- ACA₀.
- **2** Ramsey's theorem: RT^n for $n \ge 3$.
- Severy countable countable vector space has a basis.
- ④ Every countable commutative ring has a maximal ideal.
- Arzela/Ascoli's theorem.
 - 5 The Riemann mapping theorem (over WKL₀).

We will check the strength of various theorems in this way.

RM in a weaker base system

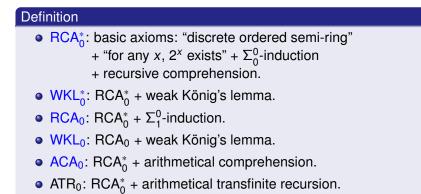
Sometimes, we weaken the base system.

Review (Big five)

- RCA₀: basic axioms: "discrete ordered semi-ring" + Σ⁰₁ induction + recursive comprehension.
- WKL₀: RCA₀ + weak König's lemma.
- ACA₀: RCA₀ + arithmetical comprehension.
- ATR₀: RCA₀ + arithmetical transfinite recursion.
- $\Pi_1^1 CA_0$: RCA₀ + Π_1^1 -comprehension.

RM in a weaker base system

Sometimes, we weaken the base system.



• $\Pi_1^1 CA_0$: RCA₀^{*} + Π_1^1 -comprehension.

Reverse mathematics over RCA₀

(Over RCA₀)

The following are provable within RCA₀.

- Every finitely generated vector space has a basis.
- For every countable field K, every polynomial f(x) ∈ K[x] has only finitely many roots in K.

The following are equivalent to WKL₀.

- Every countable ring has a prime ideal.
- Σ_1^0 -determinacy in Cantor space.
- Every countable Peano system is isomorphic to $(\mathbb{N}, 0. + 1)$.

The following are equivalent to ACA₀.

- Every countable ring has a maximal ideal.
- Ramsey's theorem RT³₂.

Reverse mathematics over RCA^{*}₀

(Over RCA_0^*)

The following are equivalent to RCA₀.

- Every finitely generated vector space has a basis.
- For every countable field K, every polynomial f(x) ∈ K[x] has only finitely many roots in K.

The following are equivalent to WKL₀*.

- Every countable ring has a prime ideal.
- Σ_1^0 -determinacy in Cantor space.

The following is equivalent to WKL_0 .

• Every countable Peano system is isomorphic to $(\mathbb{N}, 0. + 1)$.

The following are equivalent to ACA₀.

- Every countable ring has a maximal ideal.
- Ramsey's theorem $RT_2^3 \leftarrow I\Sigma_1^0$ is needed!!

Outline

- Formalizing Computability
- Hybrid method Computability and NS models
- Classical methods survive
- 2 Nonstandard analysis and RM
- 3 Some recent ideas
 - Random preserving extension
 - RM over RCA^{*}₀

Formalizing Computability Hybrid method Computability and NS models Classical methods survive

Outline

- Formalizing Computability
- Hybrid method Computability and NS models
- Classical methods survive

2 Nonstandard analysis and RM

- 3 Some recent ideas
 - Random preserving extension
 - RM over RCA^{*}₀

Formalizing Computability Hybrid method Computability and NS models Classical methods survive

Big five plus one vs Computability

Big five plus one

- RCA₀: "discrete ordered semi-ring"+ Σ_1^0 induction + Δ_1^0 comprehension.
- WWKL₀: RCA₀ + weak weak König's lemma.
- WKL₀: RCA₀ + weak König's lemma.
- ACA₀: RCA₀ + Σ_0^1 comprehension.
- ATR₀: RCA₀ + arithmetical transfinite recursion.
- $\Pi_1^1 CA_0$: RCA₀ + Π_1^1 comprehension.

Formalizing Computability Hybrid method Computability and NS models Classical methods survive

Big five plus one vs Computability

Big five plus one

- RCA₀: Turing reducibility.
- WWKL₀: Martin-Löf random real.
- WKL₀: Low basis theorem for Π_1^0 -classes.
- ACA₀: Turing jump.
- ATR₀: (Hyper arithmetical reducibility).
- Π¹₁CA₀: Hyper jump.

Formalizing Computability Hybrid method Computability and NS models Classical methods survive

Ramsey's theorem

Question

What is the strength of (several versions of) Ramsey's theorem?

Definition (Ramsey's theorem.)

• $\operatorname{RT}_{k}^{n}$: for any $P : [\mathbb{N}]^{n} \to k$, there exists an infinite set $H \subseteq \mathbb{N}$ such that $|P([H]^{n})| = 1$.

•
$$\operatorname{RT}_{\infty}^{n} := \forall k \operatorname{RT}_{k}^{n}$$

• $\operatorname{RT}_{\infty}^{\infty} := \forall n \operatorname{RT}^{n}$.

(We often omit ∞.)

Many results are derived from computability theory (= results on ω -models).

Formalizing Computability Hybrid method Computability and NS models Classical methods survive

What is the strength of Ramsey's theorem?

Proposition

ACA₀ proves $\forall n \forall k (RT_k^n \rightarrow RT_k^{n+1}).$

Proof.

The usual proof works within ACA₀.

Theorem (Jockusch 1972)

Over RCA_0 , RT_2^3 implies ACA_0 .

Proof.

There exists a computable coloring for $[\mathbb{N}]^3$ whose homogeneous set always computes $\mathbf{0}'$.

Thus, for $n \ge 3$, $RT_2^n = RT^n = ACA_0$

Formalizing Computability Hybrid method Computability and NS models Classical methods survive

What is the strength of Ramsey's theorem?

Proposition

ACA₀ proves $\forall n \forall k (RT_k^n \rightarrow RT_k^{n+1}).$

Proof.

The usual proof works within ACA₀.

Theorem (Jockusch 1972)

Over RCA_0 , RT_2^3 implies ACA_0 .

Proof.

There exists a computable coloring for $[\mathbb{N}]^3$ whose homogeneous set always computes $\mathbf{0}'.$

Thus, for $n \ge 3$, $RT_2^n = RT^n = ACA_0$

Formalizing Computability Hybrid method Computability and NS models Classical methods survive

What is the strength of Ramsey's theorem?

Proposition

ACA₀ proves $\forall n \forall k (RT_k^n \rightarrow RT_k^{n+1}).$

Proof.

The usual proof works within ACA₀.

Theorem (Jockusch 1972)

Over RCA_0 , RT_2^3 implies ACA_0 .

Proof.

There exists a computable coloring for $[\mathbb{N}]^3$ whose homogeneous set always computes **0**'.

Thus, for $n \ge 3$, $RT_2^n = RT^n = ACA_0$.

Formalizing Computability Hybrid method Computability and NS models Classical methods survive

Separation

Using computability theory, we have the following.

- RCA₀ ⊭ RT₂². (Specker 1971)

 ↑ there exists a computable coloring
 which has no computable homogeneous set.
 Later, RCA₀ + RT₂² ⊢ DNR (HJHLS 2008).
- RCA₀ + RT² ⊭ RT₂³. (Seetapun 1995)
 ↑ Cone avoidance for coloring for pairs. Later, low₂-basis theorem (CJS 2001).
- RCA₀ + RT² ⊭ WKL₀. (Liu 2011)
 ↑ DNR₂ avoidance for coloring for pairs.

Combining with the first-order strength, we have,

$RT_2^1 < RT^1 < RT_2^2 < RT^2 < RT_2^3 = RT^3 = \dots = RT^n < RT.$

Formalizing Computability Hybrid method Computability and NS models Classical methods survive

Separation

Using computability theory, we have the following.

- RCA₀ ⊭ RT₂². (Specker 1971)

 ↑ there exists a computable coloring
 which has no computable homogeneous set.
 Later, RCA₀ + RT₂² ⊢ DNR (HJHLS 2008).
- RCA₀ + RT² ⊭ RT₂³. (Seetapun 1995)
 ↑ Cone avoidance for coloring for pairs. Later, low₂-basis theorem (CJS 2001).
- $RCA_0 + RT^2 \nvDash WKL_0$. (Liu 2011) $\uparrow DNR_2$ avoidance for coloring for pairs.

Combining with the first-order strength, we have,

$$RT_2^1 < RT^1 < RT_2^2 < RT^2 < RT_2^3 = RT^3 = \dots = RT^n < RT.$$

Formalizing Computability Hybrid method Computability and NS models Classical methods survive

Separation

Using computability theory, we have the following.

- RCA₀ ⊭ RT₂². (Specker 1971)

 ↑ there exists a computable coloring
 which has no computable homogeneous set.
 Later, RCA₀ + RT₂² ⊢ DNR (HJHLS 2008).
- RCA₀ + RT² ⊭ RT₂³. (Seetapun 1995)
 ↑ Cone avoidance for coloring for pairs. Later, low₂-basis theorem (CJS 2001).
- $RCA_0 + RT^2 \nvDash WKL_0$. (Liu 2011) $\uparrow DNR_2$ avoidance for coloring for pairs.

Combining with the first-order strength, we have,

$$RT_2^1 < RT^1 < RT_2^2 < RT^2 < RT_2^3 = RT^3 = \dots = RT^n < RT.$$

Formalizing Computability Hybrid method Computability and NS models Classical methods survive

Ramsey's theorem

Question

What is the strength of RT_2^2 ?

Formalizing low₂ basis theorem to the following.

Theorem (Cholak/Jockusch/Slaman)

For any $(M, S) \models \text{RCA}_0 + I\Sigma_2^0$ and for any coloring $P : [M]^2 \rightarrow 2$ in S, there exists $H \subseteq M$ such that H is a homogeneous set for P and $(M, S \cup \{G\}) \models I\Sigma_2^0$.

Theorem (Cholak/Jockusch/Slaman)

 $\mathsf{WKL}_0 + \mathrm{RT}_2^2 + \mathrm{I}\Sigma_2^0$ is a Π_1^1 -conservative extension of $\mathrm{I}\Sigma_2^0$

Formalizing Computability Hybrid method Computability and NS models Classical methods survive

Ramsey's theorem

Question

What is the strength of RT₂²?

Formalizing low₂ basis theorem to the following.

Theorem (Cholak/Jockusch/Slaman)

For any $(M, S) \models \text{RCA}_0 + I\Sigma_2^0$ and for any coloring $P : [M]^2 \to 2$ in S, there exists $H \subseteq M$ such that H is a homogeneous set for P and $(M, S \cup \{G\}) \models I\Sigma_2^0$.

Theorem (Cholak/Jockusch/Slaman)

 $\mathsf{WKL}_0 + \mathsf{RT}_2^2 + \mathrm{I}\Sigma_2^0$ is a Π_1^1 -conservative extension of $\mathrm{I}\Sigma_2^0$

Formalizing Computability Hybrid method Computability and NS models Classical methods survive

Ramsey's theorem

Question

What is the strength of RT₂²?

Formalizing low₂ basis theorem to the following.

Theorem (Cholak/Jockusch/Slaman)

For any $(M, S) \models \text{RCA}_0 + I\Sigma_2^0$ and for any coloring $P : [M]^2 \to 2$ in S, there exists $H \subseteq M$ such that H is a homogeneous set for P and $(M, S \cup \{G\}) \models I\Sigma_2^0$.

Theorem (Cholak/Jockusch/Slaman)

WKL₀ + RT₂² + I Σ_2^0 is a Π_1^1 -conservative extension of I Σ_2^0 .

Formalizing Computability Hybrid method Computability and NS models Classical methods survive

Recent hybrid method

 RT_2^2 can be decomposed into computable notions as follows:

- $RT_2^2 = D_2^2 + COH.$
 - D₂²: any Δ₂^X set contains an infinite set or is disjoint from an infinite set.
 - COH: any sequence of sets $\langle R_i | i \in \mathbb{N} \rangle$ has a cohesive set.

Whether D_2^2 is equivalent to RT_2^2 or not was a long term open question.

Theorem (Chong/Slaman/Yang)

```
D_2^2 is strictly weaker than RT_2^2.
```

Formalizing Computability Hybrid method Computability and NS models Classical methods survive

Recent hybrid method

 RT_2^2 can be decomposed into computable notions as follows:

- $RT_2^2 = D_2^2 + COH.$
 - D₂²: any Δ₂^X set contains an infinite set or is disjoint from an infinite set.
 - COH: any sequence of sets $\langle R_i | i \in \mathbb{N} \rangle$ has a cohesive set.

Whether D_2^2 is equivalent to RT_2^2 or not was a long term open question.

Theorem (Chong/Slaman/Yang)

```
D_2^2 is strictly weaker than RT_2^2.
```

Formalizing Computability Hybrid method Computability and NS models Classical methods survive

Recent hybrid method

 RT_2^2 can be decomposed into computable notions as follows:

- $RT_2^2 = D_2^2 + COH.$
 - D₂²: any Δ₂^X set contains an infinite set or is disjoint from an infinite set.
 - COH: any sequence of sets $\langle R_i | i \in \mathbb{N} \rangle$ has a cohesive set.

Whether D_2^2 is equivalent to RT_2^2 or not was a long term open question.

Theorem (Chong/Slaman/Yang)

```
D_2^2 is strictly weaker than RT_2^2.
```

Formalizing Computability Hybrid method Computability and NS models Classical methods survive

Recent hybrid method

Theorem (Chong/Slaman/Yang)

 D_2^2 is strictly weaker than RT_2^2 .

ldea.

• (Jockusch) There exists a computable coloring *P* such that any homogeneous set for *P* is not low.

 (Downey/Hirschfeldt/Lempp/Solomon) There exists a Δ₂-set which contains/is disjoint from no infinite low set.

Lemma (not enough for the theorem)

Formalizing Computability Hybrid method Computability and NS models Classical methods survive

Recent hybrid method

Theorem (Chong/Slaman/Yang)

 D_2^2 is strictly weaker than RT_2^2 .

Idea.

- (Jockusch) There exists a computable coloring *P* such that any homogeneous set for *P* is not low.
- (Downey/Hirschfeldt/Lempp/Solomon) There exists a Δ₂-set which contains/is disjoint from no infinite low set.

Lemma (not enough for the theorem)

Formalizing Computability Hybrid method Computability and NS models Classical methods survive

Recent hybrid method

Theorem (Chong/Slaman/Yang)

 D_2^2 is strictly weaker than RT_2^2 .

Idea.

- (Jockusch) There exists a computable coloring *P* such that any homogeneous set for *P* is not low.
 ⇐ IΣ⁰₁ is enough to prove this.
- (Downey/Hirschfeldt/Lempp/Solomon) There exists a Δ₂-set which contains/is disjoint from no infinite low set.
 - \Leftarrow IΣ₂⁰ looks to be needed to prove this.

Lemma (not enough for the theorem)

Formalizing Computability Hybrid method Computability and NS models Classical methods survive

Recent hybrid method

Theorem (Chong/Slaman/Yang)

 D_2^2 is strictly weaker than RT_2^2 .

Idea.

- (Jockusch) There exists a computable coloring *P* such that any homogeneous set for *P* is not low.
 ⇐ IΣ⁰₁ is enough to prove this.
- (Downey/Hirschfeldt/Lempp/Solomon) There exists a Δ₂-set which contains/is disjoint from no infinite low set.
 - \Leftarrow IΣ₂⁰ looks to be needed to prove this.

Lemma (not enough for the theorem)

Formalizing Computability Hybrid method Computability and NS models Classical methods survive

Indicator approach

Classical argument is still useful.

We will see several consequences of Paris's indicator argument using the "density for finite colorings".

Definition (finite coloring)

- (n, k)-finite coloring is a function $P : [F]^n \to k$ where $F = \operatorname{dom}(P) \subseteq_{\operatorname{fin}} \mathbb{N}$.
- (n, ∞) -finite coloring is a function $P : [F]^n \to k$ where $F = \operatorname{dom}(P) \subseteq_{\operatorname{fin}} \mathbb{N}$ and $k \leq \min F$.
- (∞, ∞) -finite coloring is a function $P : [F]^n \to k$ where $F = \operatorname{dom}(P) \subseteq_{\operatorname{fin}} \mathbb{N}$ and $n, k \leq \min F$.

Density notion

Formalizing Computability Hybrid method Computability and NS models Classical methods survive

Let $\alpha, \beta \in \omega \cup \{\infty\}$.

Definition (RCA₀)

A finite set X is said to be 0-dense(α, β) if |X| > min X (relatively large).

A finite set X is said to be m + 1-dense(α,β) if for any (α,β)-finite coloring P with dom(P) = X, there exists Y ⊆ X which is m-dense(α,β) and P-homogeneous.

Note that "*X* is *m*-dense(α, β)" can be expressed by a Σ_0^0 -formula.

Formalizing Computability Hybrid method Computability and NS models Classical methods survive

Paris-Harrington principle

Definition

- *m*PH^α_β: for any *a* ∈ N there exists an *m*-dense(α,β) set X such that min X > a.
- mPH^α_β:for any X₀ ⊆_{inf} N, there exists an *m*-dense(α,β) set X such that X ⊆_{fin} X₀.

We write ItPH^{α}_{β} for $\forall m \, mPH^{\alpha}_{\beta}$.

- Original Paris's independent statement from PA is ItPH³₂.
- Original Paris-Harrington principle is 1PH[∞]_∞.
- They are both equivalent to the Σ₁-soundness of PA.

Formalizing Computability Hybrid method Computability and NS models Classical methods survive

Paris-Harrington principle

Definition

- *m*PH^α_β: for any *a* ∈ N there exists an *m*-dense(α,β) set X such that min X > a.
- mPH^α_β:for any X₀ ⊆_{inf} N, there exists an *m*-dense(α,β) set X such that X ⊆_{fin} X₀.

We write ItPH^{α}_{β} for $\forall m \, mPH^{\alpha}_{\beta}$.

- Original Paris's independent statement from PA is ItPH³₂.
- Original Paris-Harrington principle is 1PH[∞]_∞.
- They are both equivalent to the Σ₁-soundness of PA.

Formalizing Computability Hybrid method Computability and NS models Classical methods survive

Paris's argument

We fix $\alpha, \beta \in \omega \cup \{\infty\}$ such that $\alpha, \beta \ge 2$, or $\alpha = 1$ and $\beta = \infty$.

Lemma

If (M, S) is a countable model of RCA_0 and $X \subset M$ ($X \in S$ and M-finite) is m-dense (α, β) for some $m \in M \setminus \omega$, then there exists a cut $I \subseteq_e M$ such that $I \cap X$ is unbounded in I and $(I, S \upharpoonright I) \models \operatorname{WKL}_0 + \operatorname{RT}_{\beta}^{\alpha}$. Here, $S \upharpoonright I = \{I \cap X \mid X \in S\}$.

This lemma means that m-dense (α, β) defines an indicator function for WKL₀ + RT^{α}_{β}.

Formalizing Computability Hybrid method Computability and NS models Classical methods survive

Paris's argument

Let $\tilde{\Pi}_3^0$ be a class of formulas of the form $\forall X \varphi(X)$ where $\varphi \in \Pi_3^0$.

Theorem (essentially due to Paris)

 $\begin{aligned} \mathsf{WKL}_0 + \mathsf{RT}^{\alpha}_{\beta} \text{ is a conservative extension of} \\ \mathsf{RCA}_0 + \{ m\widetilde{\mathsf{PH}}^{\alpha}_{\beta} \mid m \in \omega \} \text{ with respect to } \widetilde{\Pi}^0_3 \text{-sentences.} \end{aligned}$

Theorem (essentially due to Paris)

ItPH^{α} is not provable from WKL₀ + RT^{α}_{β}.

In fact, we can strengthen this result to the following.

Theorem

Over I Σ_1 , ItPH^{α} is equivalent to the Σ_1 -soundness of WKL₀ + RT^{α}_{β}.

Formalizing Computability Hybrid method Computability and NS models Classical methods survive

Paris's argument

Let $\tilde{\Pi}_3^0$ be a class of formulas of the form $\forall X \varphi(X)$ where $\varphi \in \Pi_3^0$.

Theorem (essentially due to Paris)

 $WKL_0 + RT^{\alpha}_{\beta}$ is a conservative extension of $RCA_0 + \{m\widetilde{PH}^{\alpha}_{\beta} \mid m \in \omega\}$ with respect to $\widetilde{\Pi}^0_3$ -sentences.

Theorem (essentially due to Paris)

It PH^{α}_{β} is not provable from $WKL_0 + RT^{\alpha}_{\beta}$.

In fact, we can strengthen this result to the following.

Theorem

Over I Σ_1 , ItPH^{α} is equivalent to the Σ_1 -soundness of WKL₀ + RT^{α}_{β}.

Formalizing Computability Hybrid method Computability and NS models Classical methods survive

Paris's argument

Let $\tilde{\Pi}_3^0$ be a class of formulas of the form $\forall X \varphi(X)$ where $\varphi \in \Pi_3^0$.

Theorem (essentially due to Paris)

 $WKL_0 + RT^{\alpha}_{\beta}$ is a conservative extension of $RCA_0 + \{m\widetilde{PH}^{\alpha}_{\beta} \mid m \in \omega\}$ with respect to $\widetilde{\Pi}^0_3$ -sentences.

Theorem (essentially due to Paris)

ItPH^{α}_{β} is not provable from WKL₀ + RT^{α}_{β}.

In fact, we can strengthen this result to the following.

Theorem Over I Σ_1 , ItPH^{α} is equivalent to the Σ_1 -soundness of WKL₀ + RT^{α}_{β}.

Formalizing Computability Hybrid method Computability and NS models Classical methods survive

Paris's argument

Let $\tilde{\Pi}_3^0$ be a class of formulas of the form $\forall X \varphi(X)$ where $\varphi \in \Pi_3^0$.

Theorem (essentially due to Paris)

 $WKL_0 + RT^{\alpha}_{\beta}$ is a conservative extension of $RCA_0 + \{m\widetilde{PH}^{\alpha}_{\beta} \mid m \in \omega\}$ with respect to $\widetilde{\Pi}^0_3$ -sentences.

Theorem (essentially due to Paris)

ItPH^{α}_{β} is not provable from WKL₀ + RT^{α}_{β}.

In fact, we can strengthen this result to the following.

Theorem

Over I Σ_1 , ItPH^{α}_{β} is equivalent to the Σ_1 -soundness of WKL₀ + RT^{α}_{β}.

Formalizing Computability Hybrid method Computability and NS models Classical methods survive

Corollary

- **1** The $\tilde{\Pi}_3^0$ -part of WKL₀ + RT₂² is I Σ_1^0 + { $m\widetilde{PH}_2^2$ | $m \in \omega$ }.
- 2 The $\widetilde{\Pi}_3^0$ -part of WKL₀ + RT_{∞}² is I Σ_1^0 + { $m\widetilde{PH}_{\infty}^2$ | $m \in \omega$ }.
- **3** ItPH $_{\infty}^{\infty}$ is not provable from ACA $_0$ + RT.

Define GPH (generalized Paris-Harrington principle) as

"every arithmetically definable infinite set contains m-dense (∞, ∞) set for any m".

Then, we have the following.

Theorem

 $I\Sigma_1 + GPH$ is the first-order part of ACA'₀, or equivalently ACA₀ + RT.

Formalizing Computability Hybrid method Computability and NS models Classical methods survive

Corollary

- **1** The $\widetilde{\Pi}_3^0$ -part of WKL₀ + RT₂² is I Σ_1^0 + { $m\widetilde{PH}_2^2$ | $m \in \omega$ }.
- 2 The $\widetilde{\Pi}_3^0$ -part of WKL₀ + RT_{∞}² is I Σ_1^0 + { $m\widetilde{PH}_{\infty}^2$ | $m \in \omega$ }.
- **3** ItPH $_{\infty}^{\infty}$ is not provable from ACA $_0$ + RT.

Define GPH (generalized Paris-Harrington principle) as

"every arithmetically definable infinite set contains m-dense (∞, ∞) set for any m".

Then, we have the following.

Theorem

 $I\Sigma_1 + GPH$ is the first-order part of ACA'₀, or equivalently ACA₀ + RT.

Formalizing Computability Hybrid method Computability and NS models Classical methods survive

Corollary

- **1** The $\widetilde{\Pi}_3^0$ -part of WKL₀ + RT₂² is I Σ_1^0 + { $m\widetilde{PH}_2^2$ | $m \in \omega$ }.
- 2 The $\widetilde{\Pi}_3^0$ -part of WKL₀ + RT_{∞}² is I Σ_1^0 + { $m\widetilde{PH}_{\infty}^2$ | $m \in \omega$ }.
- **3** ItPH $_{\infty}^{\infty}$ is not provable from ACA $_0$ + RT.

Define GPH (generalized Paris-Harrington principle) as

"every arithmetically definable infinite set contains m-dense (∞, ∞) set for any m".

Then, we have the following.

Theorem

 $I\Sigma_1 + GPH$ is the first-order part of $\mathsf{ACA}_0',$ or equivalently $\mathsf{ACA}_0 + RT.$

Formalizing Computability Hybrid method Computability and NS models Classical methods survive

Density notion for WKL₀*

Using the following weaker density notion, we know the strength of Ramsey's theorem over RCA_0^* .

Definition (within $B\Sigma_1^0 + exp$)

Let X be a finite set. Then,

- X is 0-dense^{*}(n, k) if $X \neq \emptyset$,
- X is *m* + 1-dense*(*n*, *k*) if
 - for any coloring P : [X]ⁿ → k, there exists a homogeneous set Y ⊆ X such that Y is *m*-dense^{*}(n, k),
 - $\{x \in X \mid x > 2^{\min X}\}$ is *m*-dense^{*}(*n*, *k*).

Formalizing Computability Hybrid method Computability and NS models Classical methods survive

$\operatorname{RT}_{k}^{n}$ without Σ_{1} -induction

Then, we have the following.

Theorem

Let φ be a Π_2^0 -sentence. If WKL₀^{*} + RT_kⁿ $\vdash \varphi$, then RCA₀^{*} $\vdash \varphi$.

Recall that the Π_2^0 part of RCA^{*}₀ is EFA, *i.e.*, its provably recursive functions are elementary functions. In general,

Theorem

Let T be a set of Π_2^0 -formulas. Let φ be a Π_2^0 -sentence. If WKL₀^{*} + T + RT_kⁿ + φ , then RCA₀^{*} + T + φ .

Formalizing Computability Hybrid method Computability and NS models Classical methods survive

$\operatorname{RT}_{k}^{n}$ without Σ_{1} -induction

Then, we have the following.

Theorem

Let φ be a Π_2^0 -sentence. If WKL₀^{*} + RT_kⁿ + φ , then RCA₀^{*} + φ .

Recall that the Π_2^0 part of RCA₀^{*} is EFA, *i.e.*, its provably recursive functions are elementary functions.

In general,

Theorem

Let T be a set of Π_2^0 -formulas. Let φ be a Π_2^0 -sentence. If WKL₀^{*} + T + RT_kⁿ + φ , then RCA₀^{*} + T + φ .

Formalizing Computability Hybrid method Computability and NS models Classical methods survive

$\operatorname{RT}_{k}^{n}$ without Σ_{1} -induction

Then, we have the following.

Theorem

Let φ be a Π_2^0 -sentence. If WKL₀^{*} + RT_kⁿ + φ , then RCA₀^{*} + φ .

Recall that the Π_2^0 part of RCA₀^{*} is EFA, *i.e.*, its provably recursive functions are elementary functions. In general,

Theorem

Let *T* be a set of Π_2^0 -formulas. Let φ be a Π_2^0 -sentence. If WKL₀^{*} + *T* + RT_kⁿ + φ , then RCA₀^{*} + *T* + φ .

Formalizing Computability Hybrid method Computability and NS models Classical methods survive

References

- Peter A. Cholak, Carl G. Jockusch, and Theodore A. Slaman. On the strength of Ramsey's theorem for pairs. Journal of Symbolic Logic, 66(1):1–55, 2001.
- Chi-Tat Chong, Theodore A. Slaman, and Yue Yang. The metamathematics of Stable Ramsey's Theorem for pairs. to appear.
- Denis R. Hirschfeldt. Slicing the truth: On the computability theoretic and reverse mathematical analysis of combinatorial principles. to appear.
- J. B. Paris. Some independence results for Peano Arithmetic. Journal of Symbolic Logic, 43(4):725–731, 1978.
- Y. On the strength of Ramsey's theorem without Σ₁-induction. Mathematical Logic Quarterly 59(1-2), 108–111 (2013).

Outline

Computability vs NS models –on Ramsey's thm–

- Formalizing Computability
- Hybrid method Computability and NS models
- Classical methods survive

2 Nonstandard analysis and RM

- 3 Some recent ideas
 - Random preserving extension
 - RM over RCA^{*}₀

JAF33, June 17, 2014

Nonstandard analysis and second-order arithmetic

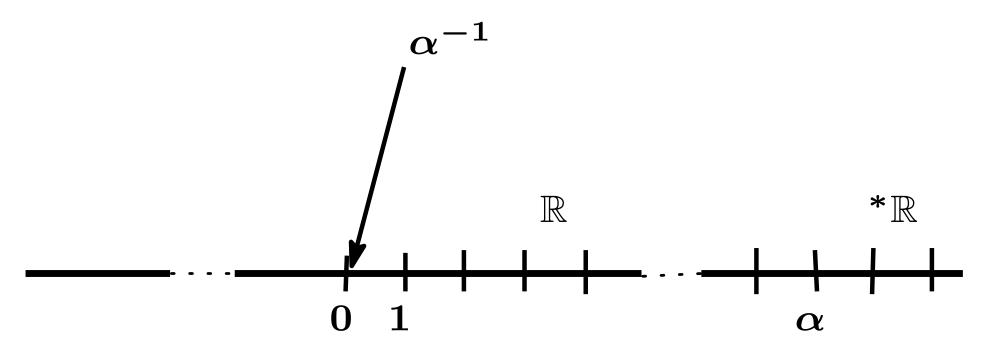
JAIST

Keita Yokoyama

Non-standard analysis

Non-standard analysis was introduced by Abraham Robinson in 1960s (based on model theory).

• Expanding the universe ($\mathbb{N} \subseteq \mathbb{N}^*$, $\mathbb{R} \subseteq \mathbb{R}^*$), we can use infinitesimals (inifinitely large and small numbers).



Non-standard analysis

Example. Let f be a continuous function, and f^* be a non-standard expansion of f. Let $\omega \in \mathbb{N}^* \setminus \mathbb{N}$ be a infinitely large number. Then, the Riemann integral and the derivative are defined as follows: Riemann integral:

$$\int_0^1 f(x)\,dx = \mathrm{st}\left(\sum_{k=1}^\omega rac{f^*(k/\omega)}{\omega}
ight).$$

derivative:

$$f'(a) = \mathrm{st}\left(rac{f^*(a+1/\omega)-f^*(a)}{1/\omega}
ight).$$

Non-standard analysis

Example (Bolzano Weierstraß theorem). Let $\langle a_n \mid n \in \mathbb{N} \rangle$ be a real sequence. Let $\langle a_n^* \mid n \in \mathbb{N}^* \rangle$ be the non-standard expansion of $\langle a_n \mid n \in \mathbb{N} \rangle$. Then, for any infinitely large number $\omega \in \mathbb{N}^* \setminus \mathbb{N}$, there exists a subsequence $\langle a_{n_i} \mid i \in \mathbb{N} \rangle$ which converges to $r := \operatorname{st}(a_{\omega}^*)$.

We can do mathematics only by using bounded formulas or less complicated $(\Sigma_1^0 \cup \Pi_1^0)$ formulas.

1. Model theoretic non-standard arguments

Within a countable model of WKL_0 or ACA_0 , we can do

non-standard analysis by means of weak saturation, standard part principle,...

- Non-standard arguments for WKL₀ (Tanaka)
 - existence of Haar measure (Tanaka/Yamazaki)
- Non-standard arguments for $\ensuremath{\mathsf{ACA}}_0$
 - Riemann mapping theorem (Y)

1. Model theoretic non-standard arguments

2. Non-standard arithmetic

Big five systems are characterized by non-standard arithmetic (Keisler).

We combine 1 and 2, and introduce non-standard second order arithmetic.

3. Non-standard second order arithmetic

- 3. Non-standard second order arithmetic
- 1. Expansions of second order arithmetic and non-standard arithmetic.
- We can do analysis in both 'standard structure' and 'non-standard structure'.
- 3. We can use typical non-standard priciples such as 'standard part priciple', 'transfer principle',...
- Conservation: if we prove a 'standard theorem' within a NS-system, then we can prove the same theorem within a corresponding (standard) second order arithmetic.

- 1. Model theoretic non-standard arguments
- 2. Non-standard arithmetic
- 3. Non-standard second order arithmetic
- We can do non-standard analysis in non-standard second order arithmetic.
- Using non-standard second order arithmetic and conservation, we can prove standard theorems in a weak second order arithmetic easily (original purpose).
- We can do Reverse Mathematics for non-standard analysis.

Language \mathcal{L}_2^*

Language of non-standard second order arithmetic (\mathcal{L}_2^*) are the following:

- s number variables: $x^{\mathrm{s}}, y^{\mathrm{s}}, \ldots$,
- * number variables: x^*, y^*, \ldots ,
- ${f s}$ set variables: $X^{f s},Y^{f s},\ldots$,
- * set variables: X^*, Y^*, \ldots ,
- s symbols: $0^{s}, 1^{s}, =^{s}, +^{s}, \cdot^{s}, <^{s}, \in^{s}, \in^{s},$
- * symbols: $0^*, 1^*, =^*, +^*, \cdot^*, <^*, \in^*$, function symbol: $\sqrt{.}$

s-structure and *-structure

 M^{s} : range of $x^{s}, y^{s}, ...,$ M^{*} : range of $x^{*}, y^{*}, ...,$ S^{s} : range of $X^{s}, Y^{s}, ...,$ S^{*} : range of $X^{*}, Y^{*}, ...,$

 $V^{\mathrm{s}} = (M^{\mathrm{s}}, S^{\mathrm{s}}; 0^{\mathrm{s}}, 1^{\mathrm{s}}, \dots)$: s- \mathcal{L}_{2} structure. $V^{*} = (M^{*}, S^{*}; 0^{*}, 1^{*}, \dots)$: *- \mathcal{L}_{2} structure. $\sqrt{M^{\mathrm{s}} \cup S^{\mathrm{s}}} \to M^{*} \cup S^{*}$: embedding.

We usually regard M^{s} as a subset of M^{*} .

(Notations)

Let φ be an \mathcal{L}_2 -formula.

- φ^s: L^{*}₂ formula constructed by adding ^s to any L₂ symbols in φ.
- $\varphi^* : \mathcal{L}_2^*$ formula constructed by adding * to any \mathcal{L}_2 symbols in φ .
- $\check{x^{\mathrm{s}}} := \sqrt{(x^{\mathrm{s}})}$.

•
$$\check{X^{\mathrm{s}}} := \sqrt{(X^{\mathrm{s}})}$$
.

We usually omit ^s and * of relations $=, \leq, \in$. We often say " φ holds in V^{s} (in V^{*})" when φ^{s} (φ^{*}) holds.

Typical axioms of non-standard analysis

emb: " $\sqrt{}$ is an injective homomorphism".

$$\mathrm{e}: \hspace{0.2cm} ec{y^{\mathrm{s}}} \forall y^{\mathrm{s}}(x^{*} < \check{y^{\mathrm{s}}}
ightarrow \exists z^{\mathrm{s}}(x^{*} = \check{z^{\mathrm{s}}})).$$

$$ext{fst}: \ orall X^*(ext{card}(X^*) \in M^{ ext{s}} \ o \exists Y^{ ext{s}} orall x^{ ext{s}}(x^{ ext{s}} \in Y^{ ext{s}} \leftrightarrow \check{x^{ ext{s}}} \in X^*).$$

$$\mathrm{st}: \; orall X^* \exists Y^\mathrm{s} orall x^\mathrm{s} (x^\mathrm{s} \in Y^\mathrm{s} \leftrightarrow \check{x^\mathrm{s}} \in X^*).$$

$$egin{aligned} &\Sigma^i_j ext{overspill(saturation)}: \ &orall x^* orall X^* (orall y^{ ext{s}} \exists z^{ ext{s}}(z^{ ext{s}} \geq y^{ ext{s}} \wedge arphi(ilde{z^{ ext{s}}},x^*,X^*)^*)) \ & o \exists y^* (orall w^{ ext{s}}(y^* > ilde{w^{ ext{s}}}) \wedge arphi(y^*,x^*,X^*)^*)) \ & ext{for any } \Sigma^i_j(\mathcal{L}_2) ext{-formula } arphi(z,x,X). \end{aligned}$$

$$\begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \textbf{Typical axioms of non-standard analysis} \end{array} \end{array} \\ \Sigma_{j}^{i} \text{equiv}: (\varphi^{\text{s}} \leftrightarrow \varphi^{*}) \\ & \text{for any } \Sigma_{j}^{i}(\mathcal{L}_{2}) \text{-sentence } \varphi. \end{array} \\ \begin{array}{l} \begin{array}{l} \Sigma_{j}^{i} \text{TP}: & \forall x^{\text{s}} \forall X^{\text{s}}(\varphi(x^{\text{s}}, X^{\text{s}})^{\text{s}} \leftrightarrow \varphi(\check{x^{\text{s}}}, \check{X^{\text{s}}})^{*}) \\ & \text{for any } \Sigma_{j}^{i}(\mathcal{L}_{2}) \text{-formula } \varphi(x, X). \end{array} \\ \begin{array}{l} \begin{array}{l} \textbf{LMP}: & \forall H^{*} \in \mathbb{N}^{*} \setminus \mathbb{N}^{\text{s}} \ \forall T^{*} \subseteq 2^{ 0 \\ & \rightarrow \exists \sigma^{*} \in T^{*} \ln(\sigma^{*}) = H^{*} \wedge \sigma^{*} \cap \mathbb{N}^{\text{s}} \in V^{\text{s}}. \end{array} \end{array}$$

(An NS-tree which has a positive measure has a standard path.)

NS-systems

We define systems of non-standard second order arithmetic as follows.

ns-BASIC = $(RCA_0)^{s}$ + emb + e + fst + Σ_1^0 overspill $+\Sigma_2^1$ equiv $+\Sigma_0^0$ TP. $ns-WKL_0 = ns-BASIC + st.$ $ns-ACA_0 = ns-BASIC + st + \Sigma_1^1 TP.$ $ns-WWKL_0 = ns-BASIC + LMP.$ Since st implies LMP, we have $ns-BASIC < ns-WWKL_0 < ns-WKL_0 < ns-ACA_0$.

ns-BASIC = $(RCA_0)^{s}$ + emb + e + fst + Σ_1^{0} overspill $+\Sigma_2^1$ equiv $+\Sigma_0^0$ TP. $\Leftarrow M^{\mathrm{s}} \subseteq_{e} M^{*}$ (semi-regurar), $S^{\mathrm{s}} \subset \mathrm{Cod}(M^{\mathrm{s}}/M^{*}) = S^{*} \restriction M^{\mathrm{s}}$ $ns-WKL_0 = ns-BASIC + st.$ $\Leftarrow S^{\mathrm{s}} = \operatorname{Cod}(M^{\mathrm{s}}/M^{*}) = S^{*} \restriction M^{\mathrm{s}}$ $ns-ACA_0 = ns-BASIC + st + \Sigma_1^{\perp}TP.$ $\Leftarrow (M^{\mathrm{s}}, S^{\mathrm{s}}) \prec_{\Sigma^{1}_{1}} (M^{*}, S^{*})$ $ns-WWKL_0 = ns-BASIC + LMP.$ $\Leftarrow S^{\mathrm{s}} \subseteq_r \operatorname{Cod}(M^{\mathrm{s}}/M^*) = S^* \restriction M^{\mathrm{s}}$

NS-systems

Theorem 1.

- 1. ns-WKL₀ \vdash (WKL₀)^s + (WKL₀)^{*}.
- 2. $ns-WKL_0$ is a conservative extension of WKL_0 .

Theorem 2.

- 1. ns-ACA₀ \vdash (ACA₀)^s + (ACA₀)^{*}.
- 2. $ns-ACA_0$ is a conservative extension of ACA_0 .

Theorem 3 (Simpson-Y).

- 1. ns-WWKL₀ \vdash (WWKL₀)^s + (WWKL₀)^{*}.
- 2. $ns-WWKL_0$ is a conservative extension of $WWKL_0$.

RM for non-standard analysis

Theorem 4. The following are equivalent over **ns-BASIC**.

- 1. $ns-WKL_0$.
- 2. For any continuous function f^{s} on [0, 1] in V^{s} , there exists a piecewise linear s-continuous continuous function f^{*} on [0, 1] in V^{*} such that $\operatorname{st}(f^{*}) = f^{s}$.
- 3. For any totally bounded complete separable metric space $\langle A^{\mathrm{s}}, d^{\mathrm{s}} \rangle$ in V^{s} , there exist $A^{*} \supset A^{\mathrm{s}}$ and $d^{*} \supset d^{\mathrm{s}}$ in V^{*} such that

$$\hat{A}^* = igcup_{x^{\mathrm{s}} \in \hat{A}^{\mathrm{s}}} \mathrm{mon}(x^{\mathrm{s}}).$$

4. Non-standard Jordan curve theorem:

for any Jordan curve J^{s} , there exist non-standard arcwise connected disjoint open sets D_{1}^{*}, D_{2}^{*} such that $\partial D_{1}^{*} = \partial D_{2}^{*} = \mathbb{R}^{*2} \setminus D_{1}^{*} \cup D_{2}^{*}$ and $\operatorname{st}(\partial D_{1}^{*}) = J^{s}$.

Theorem 5. The following are equivalent over ns-BASIC.

- 1. $ns-WWKL_0$.
- 2. $L(\operatorname{st}^{-1}(A^{\operatorname{s}})) \leq \alpha^{\operatorname{s}} \Leftrightarrow \mu(A^{\operatorname{s}}) \leq \alpha^{\operatorname{s}}$ for any $A^{\operatorname{s}} \subseteq [0, 1]$, where $L(\operatorname{st}^{-1}(A^{\operatorname{s}})) = \inf\{L(B^{*}) \mid \operatorname{st}^{-1}(A^{\operatorname{s}}) \subseteq B^{*} \subseteq \Omega\}.$
- 3. If F^* is an s-bounded function on [0, 1], f^s is a pre-standard part of F^* and $H^* \in \mathbb{N}^* \setminus \mathbb{N}^s$, then f^s is integrable on [0, 1] and

$$\int_0^1 f^{\mathrm{s}}(x) dx = \mathrm{st}\left(\sum_{i\leq H^*} rac{F^*(i/H^*)}{H^*}
ight)$$

Theorem 6. The following are provable in **ns-ACA**₀.

- 1. Transfer principle for real numbers.
- 2. Transfer principle for continuous functions.
- 3. Non-standard version of Bolzano/Weierstraß theorem.
- 4. Non-standard version of Ascoli's lemma.
- 5. Non-standard version of Reimann mapping theorem.

Remark that they are not equivalent to $ns-ACA_0$ over ns-BASIC. On the other hand, Sam Sanders did some RM for Π_1 -transfer principle in a different framework.

Question 1.

Are they all equivalent to **ns-ACA**₀ over **ns-BASIC** plus some basic notion?

We can apply these results to standard Reverse Mathematics.

Back to standard RM

Corollary 7. The following is equivalent over **RCA**₀. 1. **WKL**₀.

2. JRMT: for any Jordan curve J, there exists a biholomorphism h from $\Delta(0; 1)$ to $D \subseteq \mathbb{C}$ such that $\partial D = J$.

Proof 1 \rightarrow 2. By the conservation result, we only need to show **ns-WKL**₀ \vdash (JRMT)^s. By the previous theorem, there exists a non-standard biholomorphism h^* from $\Delta(0; 1)$ to $D^* \subseteq \mathbb{C}^*$ such that $\operatorname{st}(\partial D^*) = J^{s}$.

By the Schwarz lemma, $h^{*'}$ is bouded on $\Delta(1 - 2^{-i})$ for any $i \in \mathbb{N}^{s}$. Thus, h^{*} is s-continuous on $\Delta(1)$. Then we can easily show that $h^{s} = \operatorname{st}(h^{*})$ is a desired biholomorphic function in V^{s} . Hence $\operatorname{ns-WKL}_{0} \vdash (\operatorname{JRMT})^{s}$. \Box

- Prove "simple version" of the target theorem within RCA₀.
- 2. Use "non-standard approximation property" which is equivalent to **ns**-**WKL**₀, then we get a **WKL**₀ version of the target theorem.
- 3. Use "transfer principle" which is equivalent to $ns-ACA_0$, then we get the full version of the target theorem within ACA_0 .

RCA₀ version:

The following are provable within RCA_0 .

- Every polynomial on [0, 1] has a maximum.
- For every polynomial f on $\Delta(1)\subseteq \mathbb{C},$ |f| has a maximum on $\partial\Delta(1).$
- Jordan curve theorem for a piecewise linear Jordan curve.
- Riemann mapping theorem for a polygonal region.

Use "non-standard approximation property": The following are provable within **ns**-**WKL**₀.

- Every continuous function on a Jordan region has a maximum.
- For every holomorphic function f on a Jordan region D, |f| has a maximum on ∂D .
- Jordan curve theorem.
- Riemann mapping theorem for a Jordan region.

Use conservativity:

The following are provable within WKL_0 .

- Every continuous function on a Jordan region has a maximum.
- For every holomorphic function f on a Jordan region D, |f| has a maximum on ∂D .
- Jordan curve theorem.
- Riemann mapping theorem for a Jordan region.

Use "transfer principle":

The following are provable within $ns-ACA_0$.

- Every continuous function on a compact separable metric space has a maximum.
- For every holomorphic function f on a bounded closed set D, |f| has a maximum on ∂D .
- For every normal family F_D and $z \in D$, $\max\{|f'(z)|: f \in F_D\}$ exists.
- Riemann mapping theorem.

Use conservativity:

The following are provable within ACA_0 .

- Every continuous function on a compact separable metric space has a maximum.
- For every holomorphic function f on a bounded closed set D, |f| has a maximum on ∂D .
- For every normal family F_D and $z \in D$, $\max\{|f'(z)|: f \in F_D\}$ exists.
- Riemann mapping theorem.

- Prove "simple version" of the target theorem within RCA₀.
- 2. Use "non-standard approximation property" which is equivalent to **ns**-**WKL**₀, then we get a **WKL**₀ version of the target theorem.
- 3. Use "transfer principle" which is equivalent to $ns-ACA_0$, then we get the full version of the target theorem within ACA_0 .
- \Rightarrow Given a simple version of a standard theorem in RCA₀, we can get a WWKL₀ version, a WKL₀ version and an ACA₀ version automatically.

H. Jerome Keisler, Nonstandard arithmetic and reverse mathematics, *The Bulletin of Symbolic Logic*, 12(1):100.125, 2006.

Kazuyuki Tanaka, The self-embedding theorem of **WKL**₀ and a non-standard method, *Annals of Pure and Applied Logic*, 84:41-49, 1997.

Yoshihiro Horihata and Y, Nonstandard second-order arithmetic and Riemann's mapping theorem, *Annals of Pure and Applied Logic* 165, pages: 520–551, 2014.

Stephen G. Simpson and Y, A nonstandard counterpart of WWKL, *Notre Dame Journal of Formal Logic* 52(3), pages: 229–243, 2011.

Random preserving extension RM over RCA^*_0

Outline

- Computability vs NS models –on Ramsey's thm–
 - Formalizing Computability
 - Hybrid method Computability and NS models
 - Classical methods survive
- 2 Nonstandard analysis and RM
- 3 Some recent ideas
 - Random preserving extension
 - RM over RCA^{*}₀

Random preserving extension RM over RCA^{*}₀

Differentiation theorem

In computable analysis, the following result is known.

Theorem (Demuth, 1975)

If $f : [0, 1] \to \mathbb{R}$ is a computable function with bounded variation and $z \in [0, 1]$ is Martin-Löf random, then f is differentiable at z.

By this result, one can conjecture the following.

Theorem (WWKL₀)

For any continuous function $f : [0, 1] \rightarrow \mathbb{R}$ with bounded variation, there exists $z \in [0, 1]$ such that f is (pseudo-)differentiable at z. In fact, f is differentiable almost everywhere. ((pseudo-)differentiable: the ratio of differences converges in the Cauchy sense, but the value might not exist.)

This is true, but formalizing the original proof is hard.

Random preserving extension RM over RCA^*_0

Differentiation theorem

In computable analysis, the following result is known.

Theorem (Demuth, 1975)

If $f : [0, 1] \to \mathbb{R}$ is a computable function with bounded variation and $z \in [0, 1]$ is Martin-Löf random, then f is differentiable at z.

By this result, one can conjecture the following.

Theorem (WWKL₀)

For any continuous function $f : [0, 1] \rightarrow \mathbb{R}$ with bounded variation, there exists $z \in [0, 1]$ such that f is (pseudo-)differentiable at z. In fact, f is differentiable almost everywhere. ((pseudo-)differentiable: the ratio of differences converges in the Cauchy sense, but the value might not exist.)

This is true, but formalizing the original proof is hard.

Random preserving extension RM over RCA^*_0

Differentiation theorem

In computable analysis, the following result is known.

Theorem (Demuth, 1975)

If $f : [0, 1] \to \mathbb{R}$ is a computable function with bounded variation and $z \in [0, 1]$ is Martin-Löf random, then f is differentiable at z.

By this result, one can conjecture the following.

Theorem (WWKL₀)

For any continuous function $f : [0, 1] \rightarrow \mathbb{R}$ with bounded variation, there exists $z \in [0, 1]$ such that f is (pseudo-)differentiable at z. In fact, f is differentiable almost everywhere. ((pseudo-)differentiable: the ratio of differences converges in the Cauchy sense, but the value might not exist.)

This is true, but formalizing the original proof is hard.

Random preserving extension RM over RCA^*_{0}

Differentiation theorem

We want to convince the following two results.

Theorem (Greenberg/Miller/Nies/Slaman)

Within WKL₀, any continuous function $f : [0, 1] \rightarrow \mathbb{R}$ is a difference of two monotone functions.

Theorem (Brattka/Miller/Nies)

Any computable monotone function $f : [0, 1] \rightarrow \mathbb{R}$ is differentiable at any Martin-Löf random points. This is formalizable within RCA₀, thus, WWKL₀ proves that any computable monotone function $f : [0, 1] \rightarrow \mathbb{R}$ is differentiable almost everywhere.

Random preserving extension RM over RCA^*_0

Extension with randomness preservation

Lemma (Simpson/Y)

For any countable model $(M, S) \models WWKL_0$, there exists $\overline{S} \supseteq S$ such that $(M, \overline{S}) \models WKL_0$ and the following holds:

(†) for any $A \in \overline{S}$ there exists $B \in S$ such that B is Martin-Löf random relative to A.

Idea of the proof.

If $f : [0, 1] \to \mathbb{R}$ is a continuous function in $(M, S) \models WWKL_0$, then, f is a difference of two monotone functions f = g - h in (M, \overline{S}) . Take $z \in [0, 1] \cap S$ such that z is ML-random relative to $g \oplus h$, then f is differentiable at z.

Random preserving extension RM over RCA^*_0

Extension with randomness preservation

Lemma (Simpson/Y)

For any countable model $(M, S) \models WWKL_0$, there exists $\overline{S} \supseteq S$ such that $(M, \overline{S}) \models WKL_0$ and the following holds:

(†) for any $A \in \overline{S}$ there exists $B \in S$ such that B is Martin-Löf random relative to A.

Idea of the proof.

If $f : [0, 1] \to \mathbb{R}$ is a continuous function in $(M, S) \models WWKL_0$, then, f is a difference of two monotone functions f = g - h in (M, \overline{S}) . Take $z \in [0, 1] \cap S$ such that z is ML-random relative to $g \oplus h$, then f is differentiable at z.

Reverse mathematics over RCA₀*

(Over RCA_0^*)

The following are equivalent to RCA₀.

- Every finitely generated vector space has a basis.
- For every countable field K, every polynomial f(x) ∈ K[x] has only finitely many roots in K.

The following are equivalent to WKL₀*.

- Every countable ring has a prime ideal.
- Σ_1^0 -determinacy in Cantor space.

The following is equivalent to WKL_0 .

• Every countable Peano system is isomorphic to $(\mathbb{N}, 0. + 1)$.

The following are equivalent to ACA₀.

- Every countable ring has a maximal ideal.
- Ramsey's theorem $RT_2^3 \leftarrow I\Sigma_1^0$ is needed!!

Reverse mathematics over RCA₀*

(Over RCA_0^*)

The following are equivalent to RCA₀.

- Every finitely generated vector space has a basis.
- For every countable field K, every polynomial f(x) ∈ K[x] has only finitely many roots in K.

The following are equivalent to WKL₀*.

- Every countable ring has a prime ideal.
- Σ_1^0 -determinacy in Cantor space.

The following is equivalent to WKL_0 .

• Every countable Peano system is isomorphic to $(\mathbb{N}, 0, +1)$.

The following are equivalent to ACA₀.

- Every countable ring has a maximal ideal.
- Ramsey's theorem $RT_2^3 \leftarrow I\Sigma_1^0$ is needed!!

Question from second-order categoricity of $\mathbb N$

We want to characterize $\ensuremath{\mathbb{N}}$ by second-order categoricity within a system as weak as possible.

Question (Simpson/Y)

Is \mathbb{N} second-order characterizable within RCA^{*}₀? Precisely, we want a second-order statement φ such tha

- RCA_0^* proves \mathbb{N} satisfies φ .
- RCA^{*}₀ proves the categoricity theorem for φ (CT(φ)), where,
 - $CT(\varphi)$: if an (inner) structure A satisfies φ then $A \cong \mathbb{N}$.

 \Rightarrow No!!

Question from second-order categoricity of $\mathbb N$

We want to characterize $\ensuremath{\mathbb{N}}$ by second-order categoricity within a system as weak as possible.

Question (Simpson/Y)

Is \mathbb{N} second-order characterizable within RCA_0^* ? Precisely, we want a second-order statement φ such that

- RCA_0^* proves \mathbb{N} satisfies φ .
- RCA_0^* proves the categoricity theorem for φ (CT(φ)), where,
 - $CT(\varphi)$: if an (inner) structure A satisfies φ then $A \cong \mathbb{N}$.

⇒No‼

Question from second-order categoricity of $\mathbb N$

We want to characterize $\ensuremath{\mathbb{N}}$ by second-order categoricity within a system as weak as possible.

Question (Simpson/Y)

Is \mathbb{N} second-order characterizable within RCA_0^* ? Precisely, we want a second-order statement φ such that

- RCA_0^* proves \mathbb{N} satisfies φ .
- RCA_0^* proves the categoricity theorem for φ (CT(φ)), where,
 - $CT(\varphi)$: if an (inner) structure A satisfies φ then $A \cong \mathbb{N}$.

⇒No‼

Random preserving extension RM over RCA^{*}₀

Categoricity requires $I\Sigma_1^0$

Theorem (Kołodziejczyk/Y)

Let φ be a second-order statement such that

 WKL_0^* proves \mathbb{N} satisfies φ .

Then, over RCA_0^* ,

 $CT(\varphi)$ implies RCA_0 .

This theorem is an easy consequence of the following.

Theorem (Kołodziejczyk/Y)

The following are equivalent over RCA₀^{*}.

- $\bullet \neg I\Sigma_1^0.$
- 2 There exists an (inner) structure A for arithmetic, i.e., $A \subseteq \mathbb{N}, +_A \subseteq A \times A, \cdot_A \subseteq A \times A, \ldots$, such that $|A| < |\mathbb{N}|$ and $(A, \{X \mid X \subseteq A\}) \models \mathsf{WKL}_0^*$.

Random preserving extension RM over RCA^{*}₀

Categoricity requires $I\Sigma_1^0$

Theorem (Kołodziejczyk/Y)

Let φ be a second-order statement such that

WKL^{*}₀ proves \mathbb{N} satisfies φ .

Then, over RCA_0^* ,

 $CT(\varphi)$ implies RCA_0 .

This theorem is an easy consequence of the following.

Theorem (Kołodziejczyk/Y)

The following are equivalent over RCA₀^{*}.

- **2** There exists an (inner) structure A for arithmetic, i.e., $A \subseteq \mathbb{N}, +_A \subseteq A \times A, \cdot_A \subseteq A \times A, \dots$, such that $|A| < |\mathbb{N}|$ and $(A, \{X \mid X \subseteq A\}) \models \mathsf{WKL}_0^*$.

Random preserving extension RM over RCA^{*}₀

(Key lemmas for the theorem)

Lemma

If (M, S) is a model of $\operatorname{RCA}_0^* + \neg \Sigma_1^0$ -induction, then, there exists a Σ_1^0 -definable cut $I \subseteq_e M$ such that I is closed under exponentiation.

Lemma

If (M, S) is a model of $\operatorname{RCA}_0^* + \neg \Sigma_1^0$ -induction, and I is a Σ_1^0 -definable cut, then there exist $A \in S$ and $f \in S$ such that f is an isomorphism $(A, \{X \in S \mid X \subseteq A\}) \cong (I, \{X \cap I \mid X \in S\})$.

Theorem (Simpson/Smith)

If (M, S) is a model of RCA_0^* and $I \subseteq_e M$ is a cut which is closed under exponentiation, then $(I, \{X \cap I \mid X \in S\}) \models \text{WKL}_0^*$.

- Stephen G. Simpson and Rick L. Smith, Factorization of polynomials and Σ⁰₁ induction, Annals of Pure and Applied Logic 31 (1986), 289–306.
- S. G. Simpson and Y, Reverse mathematics and Peano categoricity, Annals of Pure and Applied Logic 164 (2012), no. 3, 284–293.
- Leszek Aleksander Kołodziejczyk and Y, Categorical characterizations of the natural numbers require primitive recursion, preprint.

R. Shore called the filed of Reverse Mathematics "the Playground of Logic".

Let's play in this playground with model theories of arithmetic!!

R. Shore called the filed of Reverse Mathematics "the Playground of Logic".

Let's play in this playground with model theories of arithmetic!!

Thank you!