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Some recent ideas

What is Reverse Mathematics?

Hilbert’s reductionism program (1920s):
Find a good axiomatic system T for the entire mathematics,
and prove the ‘consistency of T’ by a ‘finitistic method’.
This program failed because of Gödel’s incompleteness
theorem (1930).

⇒Which axioms are exactly needed for mathematics?
⇒ Reverse Mathematics
H. Friedman’s theme (1976):

very often, if a theorem τ of ordinary mathematics is proved from
the “right” axioms, then τ is equivalent to those axioms over some
weaker system in which itself is not provable.
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What is Reverse Mathematics?

Reverse Mathematics program (Friedman Simpson program)
1 Formalize the theorem τ of “core of math” within an

appropriate axiomatic system.
2 Find the weakest axiom T in which we can prove τ.
3 Classify “core of math” using the logical strength.

( “core of math”: basic theorems of analysis, algebra, geometry,
etc.)

Study the strength of various theorems by this method.
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language of second order arithmetic (L2)

Definition (language of second order arithmetic)

number variables:x, y, z, . . . set variables:X ,Y ,Z , . . .
constant symbols:0, 1 function symbols:+, ·
relation symbols:=, <, ∈
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Classes of formulas

bounded formula: all quantifiers are of the form ∀x < y, ∃x < y.

arithmetical formulas:(θ: bounded formula)
Σ0

n formula: ∃x1∀x2 . . . xnθ
Π0

n formula: ∀x1∃x2 . . . xnθ

analytic formula:(ϕ: arithmetical formula)
Σ1

n formula:∃X1∀X2 . . .Xnϕ
Π1

n formula:∀X1∃X2 . . .Xnϕ
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Induction axioms

Σi
j induction (IΣi

j ): for any ϕ(x) ∈ Σi
j ,

ϕ(0) ∧ ∀x(ϕ(x)→ ϕ(x + 1))→ ∀xϕ(x).

∆i
j induction (I∆i

j ): for any ϕ(x) ∈ Σi
j and ψ(x) ∈ Πi

j ,

∀x(ϕ(x)↔ ψ(x))→ (ϕ(0)∧∀x(ϕ(x)→ ϕ(x + 1))→ ∀xϕ(x)).

Σi
j bounding (BΣi

j ): for any ϕ(x, y) ∈ Σi
j ,

∀x < u∃yϕ(x, y)→ ∃v∀x < u∃y < vϕ(x, y).

Note that BΣ0
j+1 = I∆0

j over IΣ0
1. (Slaman 2004)
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Comprehension axioms

Σi
j (Πi

j ) comprehension: for any ϕ(x) ∈ Σi
j ,

∃X∀x(ϕ(x)↔ x ∈ X).

∆i
j comprehension: for any ϕ(x) ∈ Σi

j and ψ(x) ∈ Πi
j ,

∀x(ϕ(x)↔ ψ(x))→ ∃X∀x(ϕ(x)↔ x ∈ X).

weak König’s lemma:
for any infinite tree T ⊆ 2<N, ∃X∀n(X [n] ∈ T),
where X [n] = ⟨X(0), . . . ,X(n − 1)⟩.
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Subsystems of second-order arithmetic

Big five plus one
RCA0: “discrete ordered semi-ring”+Σ0

1 induction
+∆0

1 comprehension.
WWKL0: RCA0 + weak weak König’s lemma.
WKL0: RCA0 + weak König’s lemma.
ACA0: RCA0 + Σ1

0 comprehension.
ATR0: RCA0 + arithmetical transfinite recursion.
Π1

1CA0: RCA0 + Π1
1 comprehension.
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Subsystems of second-order arithmetic

Big five plus one
RCA0: In this system, we need to prove everything
“recursively”.
WWKL0: We can use the notion of measure for closed set.
WKL0: We can use Σ0

1-separation,
or we can use Hiene/Borel compactness.
ACA0: We can use number quantifier freely,
or we can use sequential compactness.
ATR0: We can compare well orderings.
Π1

1CA0: We can check well-foundedness.
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Reverse Mathematics

Theorem
The following are provable within RCA0.

1 The structure theorem for finitely generated abelian group.
2 Mean value theorem.
3 Implicit function theorem.
4 Taylor’s expansion theorem for holomorphic function.
5 Baire Category theorem.
6 The Riemann mapping theorem for a polygonal region.
7 . . .
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Reverse Mathematics

Theorem
The following are equivalent over RCA0.

1 WKL0.
2 Hiene Borel compactness for [0, 1].
3 Completeness theorem/ compactness theorem.
4 Uniqueness of algebraic closures of a countable field.
5 Every continuous function on [0, 1] has a maximum.
6 The Jordan–Schönflies theorem.
7 The Cauchy integral theorem.
8 The Riemann mapping theorem for a Jordan region.
9 . . .
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Reverse Mathematics

Theorem
The following are equivalent over RCA0.

1 ACA0.
2 Ramsey’s theorem: RTn for n ≥ 3.
3 Every countable countable vector space has a basis.
4 Every countable commutative ring has a maximal ideal.
5 Arzela/Ascoli’s theorem.
6 The Riemann mapping theorem (over WKL0).
7 . . .

We will check the strength of various theorems in this way.
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RM in a weaker base system

Sometimes, we weaken the base system.

Review (Big five)
RCA0: basic axioms: “discrete ordered semi-ring”

+ Σ0
1 induction + recursive comprehension.

WKL0: RCA0 + weak König’s lemma.
ACA0: RCA0 + arithmetical comprehension.
ATR0: RCA0 + arithmetical transfinite recursion.
Π1

1CA0: RCA0 + Π1
1-comprehension.
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RM in a weaker base system

Sometimes, we weaken the base system.

Definition
RCA∗0: basic axioms: “discrete ordered semi-ring”

+ “for any x, 2x exists” + Σ0
0-induction

+ recursive comprehension.
WKL∗0: RCA∗0 + weak König’s lemma.
RCA0: RCA∗0 + Σ0

1-induction.
WKL0: RCA0 + weak König’s lemma.
ACA0: RCA∗0 + arithmetical comprehension.
ATR0: RCA∗0 + arithmetical transfinite recursion.
Π1

1CA0: RCA∗0 + Π1
1-comprehension.
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Reverse mathematics over RCA0

(Over RCA0)
The following are provable within RCA0.

Every finitely generated vector space has a basis.
For every countable field K, every polynomial f(x) ∈ K [x] has
only finitely many roots in K.

The following are equivalent to WKL0.
Every countable ring has a prime ideal.
Σ0

1-determinacy in Cantor space.
Every countable Peano system is isomorphic to (N, 0.+ 1).

The following are equivalent to ACA0.
Every countable ring has a maximal ideal.
Ramsey’s theorem RT3

2 .
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(Over RCA∗0)

The following are equivalent to RCA0.
Every finitely generated vector space has a basis.
For every countable field K, every polynomial f(x) ∈ K [x] has
only finitely many roots in K.

The following are equivalent to WKL∗0.
Every countable ring has a prime ideal.
Σ0

1-determinacy in Cantor space.
The following is equivalent to WKL0.

Every countable Peano system is isomorphic to (N, 0.+ 1).
The following are equivalent to ACA0.

Every countable ring has a maximal ideal.
Ramsey’s theorem RT3

2 . ⇐ IΣ0
1 is needed!!
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Outline

1 Computability vs NS models –on Ramsey’s thm–
Formalizing Computability
Hybrid method Computability and NS models
Classical methods survive

2 Nonstandard analysis and RM

3 Some recent ideas
Random preserving extension
RM over RCA∗0
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Big five plus one vs Computability

Big five plus one
RCA0: “discrete ordered semi-ring”+Σ0

1 induction
+∆0

1 comprehension.
WWKL0: RCA0 + weak weak König’s lemma.
WKL0: RCA0 + weak König’s lemma.
ACA0: RCA0 + Σ1

0 comprehension.
ATR0: RCA0 + arithmetical transfinite recursion.
Π1

1CA0: RCA0 + Π1
1 comprehension.
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Formalizing Computability
Hybrid method Computability and NS models
Classical methods survive

Big five plus one vs Computability

Big five plus one
RCA0: Turing reducibility.
WWKL0: Martin-Löf random real.
WKL0: Low basis theorem for Π0

1-classes.
ACA0: Turing jump.
ATR0: (Hyper arithmetical reducibility).
Π1

1CA0: Hyper jump.
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Ramsey’s theorem

Question
What is the strength of (several versions of) Ramsey’s theorem?

Definition (Ramsey’s theorem.)

RTn
k : for any P : [N]n → k , there exists an infinite set H ⊆ N

such that |P([H]n)| = 1.
RTn
∞ := ∀k RTn

k .
RT∞∞ := ∀n RTn.

(We often omit ∞.)

Many results are derived from computability theory (= results on
ω-models).
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What is the strength of Ramsey’s theorem?

Proposition

ACA0 proves ∀n∀k(RTn
k → RTn+1

k ).

Proof.
The usual proof works within ACA0. !

Theorem (Jockusch 1972)

Over RCA0, RT3
2 implies ACA0.

Proof.

There exists a computable coloring for [N]3 whose homogeneous
set always computes 0′. !

Thus, for n ≥ 3, RTn
2 = RTn = ACA0.
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Separation

Using computability theory, we have the following.

RCA0 ! RT2
2. (Specker 1971)

⇑ there exists a computable coloring
which has no computable homogeneous set.

Later, RCA0 + RT2
2 ⊢ DNR (HJHLS 2008).

RCA0 + RT2 ! RT3
2. (Seetapun 1995)

⇑ Cone avoidance for coloring for pairs.
Later, low2-basis theorem (CJS 2001).
RCA0 + RT2 ! WKL0. (Liu 2011)
⇑ DNR2 avoidance for coloring for pairs.

Combining with the first-order strength, we have,

RT1
2 < RT1 < RT2

2 < RT2 < RT3
2 = RT3 = · · · = RTn < RT.
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Ramsey’s theorem

Question

What is the strength of RT2
2?

Formalizing low2 basis theorem to the following.

Theorem (Cholak/Jockusch/Slaman)

For any (M,S) |= RCA0 + IΣ0
2 and for any coloring P : [M]2 → 2 in

S, there exists H ⊆ M such that H is a homogeneous set for P and
(M,S ∪ {G}) |= IΣ0

2.

Theorem (Cholak/Jockusch/Slaman)

WKL0 + RT2
2 + IΣ0

2 is a Π1
1-conservative extension of IΣ0

2.
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Recent hybrid method

RT2
2 can be decomposed into computable notions as follows:

RT2
2 = D2

2 + COH.
D2

2: any ∆X
2 set contains an infinite set or is disjoint from an

infinite set.
COH: any sequence of sets ⟨Ri | i ∈ N⟩ has a cohesive set.

Whether D2
2 is equivalent to RT2

2 or not was a long term open
question.

Theorem (Chong/Slaman/Yang)

D2
2 is strictly weaker than RT2

2.
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Recent hybrid method

Theorem (Chong/Slaman/Yang)

D2
2 is strictly weaker than RT2

2.

Idea.
(Jockusch) There exists a computable coloring P such that
any homogeneous set for P is not low.
⇐ IΣ0

1 is enough to prove this.
(Downey/Hirschfeldt/Lempp/Solomon) There exists a ∆2-set
which contains/is disjoint from no infinite low set.
⇐ IΣ0

2 looks to be needed to prove this.

Lemma (not enough for the theorem)

There exists a model M |= BΣ2 + ¬IΣ2 such that any ∆2(M)-set
contains an infinite low set or is disjoint from infinite low set.
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any homogeneous set for P is not low.
⇐ IΣ0

1 is enough to prove this.
(Downey/Hirschfeldt/Lempp/Solomon) There exists a ∆2-set
which contains/is disjoint from no infinite low set.
⇐ IΣ0

2 looks to be needed to prove this.

Lemma (not enough for the theorem)

There exists a model M |= BΣ2 + ¬IΣ2 such that any ∆2(M)-set
contains an infinite low set or is disjoint from infinite low set.
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Indicator approach

Classical argument is still useful.
We will see several consequences of Paris’s indicator argument
using the “density for finite colorings”.

Definition (finite coloring)

(n, k)-finite coloring is a function P : [F ]n → k where
F = dom(P) ⊆fin N.
(n,∞)-finite coloring is a function P : [F ]n → k where
F = dom(P) ⊆fin N and k ≤ min F.
(∞,∞)-finite coloring is a function P : [F ]n → k where
F = dom(P) ⊆fin N and n, k ≤ min F.
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Density notion

Let α, β ∈ ω ∪ {∞}.
Definition (RCA0)

A finite set X is said to be 0-dense(α, β) if |X | > min X
(relatively large).
A finite set X is said to be m + 1-dense(α, β) if for any
(α, β)-finite coloring P with dom(P) = X, there exists Y ⊆ X
which is m-dense(α, β) and P-homogeneous.

Note that “X is m-dense(α, β)” can be expressed by a Σ0
0-formula.
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Paris-Harrington principle

Definition
mPHα

β : for any a ∈ N there exists an m-dense(α, β) set X
such that min X > a.
mP̃Hα

β :for any X0 ⊆inf N, there exists an m-dense(α, β) set X
such that X ⊆fin X0.

We write ItPHα
β for ∀m mPHα

β .

Original Paris’s independent statement from PA is ItPH3
2.

Original Paris-Harrington principle is 1PH∞∞.
They are both equivalent to the Σ1-soundness of PA.
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Paris’s argument

We fix α, β ∈ ω ∪ {∞} such that α, β ≥ 2, or α = 1 and β = ∞.

Lemma
If (M,S) is a countable model of RCA0 and X ⊂ M (X ∈ S and
M-finite) is m-dense(α, β) for some m ∈ M \ ω, then there exists a
cut I ⊆e M such that I ∩ X is unbounded in I and
(I,S " I) |= WKL0 + RTαβ . Here, S " I = {I ∩ X | X ∈ S}.

This lemma means that m-dense(α, β) defines an indicator
function for WKL0 + RTαβ .
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Paris’s argument

Let Π̃0
3 be a class of formulas of the form ∀Xϕ(X) where ϕ ∈ Π0

3.

Theorem (essentially due to Paris)
WKL0 + RTαβ is a conservative extension of
RCA0 + {mP̃Hα

β | m ∈ ω} with respect to Π̃0
3-sentences.

Theorem (essentially due to Paris)

ItPHα
β is not provable from WKL0 + RTαβ .

In fact, we can strengthen this result to the following.

Theorem
Over IΣ1, ItPHα

β is equivalent to the Σ1-soundness of WKL0 + RTαβ .
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Corollary

1 The Π̃0
3-part of WKL0 + RT2

2 is IΣ0
1 + {mP̃H2

2 | m ∈ ω}.
2 The Π̃0

3-part of WKL0 + RT2
∞ is IΣ0

1 + {mP̃H2
∞ | m ∈ ω}.

3 ItPH∞∞ is not provable from ACA0 + RT.

Define GPH (generalized Paris-Harrington principle) as
“every arithmetically definable infinite set contains
m-dense(∞,∞) set for any m”.

Then, we have the following.

Theorem
IΣ1 + GPH is the first-order part of ACA′0, or equivalently
ACA0 + RT.
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Density notion for WKL∗0

Using the following weaker density notion, we know the strength of
Ramsey’s theorem over RCA∗0.

Definition (within BΣ0
1 + exp)

Let X be a finite set. Then,
X is 0-dense∗(n, k) if X ! ∅,
X is m + 1-dense∗(n, k) if

for any coloring P : [X ]n → k , there exists a homogeneous set
Y ⊆ X such that Y is m-dense∗(n, k),
{x ∈ X | x > 2min X } is m-dense∗(n, k).
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RTn
k without Σ1-induction

Then, we have the following.

Theorem

Let ϕ be a Π0
2-sentence. If WKL∗0 + RTn

k ⊢ ϕ, then RCA∗0 ⊢ ϕ.

Recall that the Π0
2 part of RCA∗0 is EFA, i.e., its provably recursive

functions are elementary functions.
In general,

Theorem

Let T be a set of Π0
2-formulas. Let ϕ be a Π0

2-sentence. If
WKL∗0 + T + RTn

k ⊢ ϕ, then RCA∗0 + T ⊢ ϕ.
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Non-standard analysis

Non-standard analysis was introduced by Abraham

Robinson in 1960s (based on model theory).

• Expanding the universe (N ⊆ N∗, R ⊆ R∗), we can

use infinitesimals (inifinitely large and small numbers).

0 1

∗RR

α−1

α



Non-standard analysis

Example. Let f be a continuous function, and f∗ be a

non-standard expansion of f . Let ω ∈ N∗ \ N be a

infinitely large number. Then, the Riemann integral and

the derivative are defined as follows:

Riemann integral:
∫ 1

0
f(x) dx = st

(
ω∑

k=1

f∗(k/ω)

ω

)
.

derivative:

f ′(a) = st

(
f∗(a + 1/ω) − f∗(a)

1/ω

)
.



Non-standard analysis

Example (Bolzano Weierstraß theorem).

Let ⟨an | n ∈ N⟩ be a real sequence.

Let ⟨a∗
n | n ∈ N∗⟩ be the non-standard expansion of

⟨an | n ∈ N⟩.
Then, for any infinitely large number ω ∈ N∗ \ N, there
exists a subsequence ⟨ani | i ∈ N⟩ which converges to

r := st(a∗
ω).

We can do mathematics only by using bounded formulas

or less complicated (Σ0
1 ∪ Π0

1) formulas.



Non-standard analysis and RM

1. Model theoretic non-standard arguments

Within a countable model of WKL0 or ACA0, we can do

non-standard analysis by means of weak saturation, standard part

principle,. . .

• Non-standard arguments for WKL0 (Tanaka)

– existence of Haar measure (Tanaka/Yamazaki)

• Non-standard arguments for ACA0

– Riemann mapping theorem (Y)



Non-standard analysis and RM

1. Model theoretic non-standard arguments

2. Non-standard arithmetic

Big five systems are characterized by non-standard

arithmetic (Keisler).

We combine 1 and 2, and introduce non-standard second

order arithmetic.

3. Non-standard second order arithmetic



Non-standard analysis and RM

3. Non-standard second order arithmetic

1. Expansions of second order arithmetic and

non-standard arithmetic.

2. We can do analysis in both ‘standard structure’ and

‘non-standard structure’.

3. We can use typical non-standard priciples such as

‘standard part priciple’, ‘transfer principle’,. . .

4. Conservation: if we prove a ‘standard theorem’ within

a NS-system, then we can prove the same theorem

within a corresponding (standard) second order

arithmetic.



Non-standard analysis and RM

1. Model theoretic non-standard arguments

2. Non-standard arithmetic

3. Non-standard second order arithmetic

• We can do non-standard analysis in non-standard

second order arithmetic.

• Using non-standard second order arithmetic and

conservation, we can prove standard theorems in a

weak second order arithmetic easily (original purpose).

• We can do Reverse Mathematics for non-standard

analysis.



Language L∗
2

Language of non-standard second order arithmetic (L∗
2)

are the following:

s number variables: xs, ys, . . .,

∗ number variables: x∗, y∗, . . .,
s set variables: Xs, Y s, . . .,

∗ set variables: X∗, Y ∗, . . .,
s symbols: 0s, 1s,=s,+s, ·s, <s,∈s,

∗ symbols: 0∗, 1∗,=∗,+∗, ·∗, <∗,∈∗,
function symbol:

√
.



s-structure and ∗-structure
Ms: range of xs, ys, . . .,

M∗: range of x∗, y∗, . . .,
Ss: range of Xs, Y s, . . .,

S∗: range of X∗, Y ∗, . . ..

V s = (Ms, Ss; 0s, 1s, . . . ): s-L2 structure.

V ∗ = (M∗, S∗; 0∗, 1∗, . . . ): ∗-L2 structure.√
: Ms ∪ Ss → M∗ ∪ S∗: embedding.

We usually regard Ms as a subset of M∗.



(Notations)

Let ϕ be an L2-formula.

• ϕs : L∗
2 formula constructed by adding s

to any L2 symbols in ϕ.

• ϕ∗ : L∗
2 formula constructed by adding ∗

to any L2 symbols in ϕ.

• x̌s :=
√

(xs).

• X̌s :=
√

(Xs).

We usually omit s and ∗ of relations =,≤,∈.

We often say “ϕ holds in V s (in V ∗)” when ϕs (ϕ∗)
holds.



Typical axioms of non-standard analysis

emb : “
√

is an injective homomorphism”.

e : ∀x∗∀ys(x∗ < y̌s → ∃zs(x∗ = žs)).

fst : ∀X∗(card(X∗) ∈ Ms

→ ∃Y s∀xs(xs ∈ Y s ↔ x̌s ∈ X∗).

st : ∀X∗∃Y s∀xs(xs ∈ Y s ↔ x̌s ∈ X∗).

Σi
joverspill(saturation) :

∀x∗∀X∗(∀ys∃zs(zs ≥ ys ∧ ϕ(žs, x∗, X∗)∗)

→ ∃y∗(∀ws(y∗ > w̌s) ∧ ϕ(y∗, x∗, X∗)∗))

for any Σi
j(L2)-formula ϕ(z, x,X).



Typical axioms of non-standard analysis

Σi
jequiv : (ϕs ↔ ϕ∗)

for any Σi
j(L2)-sentence ϕ.

Σi
jTP : ∀xs∀Xs(ϕ(xs, Xs)s ↔ ϕ(x̌s, X̌s)∗)

for any Σi
j(L2)-formula ϕ(x,X).

LMP : ∀H∗ ∈ N∗ \ Ns ∀T ∗ ⊆ 2<H∗

st

(
card({σ∗ ∈ T ∗ | lh(σ∗) = H∗})

2H∗

)
> 0

→ ∃σ∗ ∈ T ∗lh(σ∗) = H∗ ∧ σ∗ ∩ Ns ∈ V s.

(An NS-tree which has a positive measure has a standard path.)



NS-systems

We define systems of non-standard second order

arithmetic as follows.

ns-BASIC =(RCA0)
s + emb + e + fst + Σ0

1overspill

+ Σ1
2equiv + Σ0

0TP.

ns-WKL0 =ns-BASIC + st.

ns-ACA0 =ns-BASIC + st + Σ1
1TP.

ns-WWKL0 =ns-BASIC + LMP.

Since st implies LMP, we have

ns-BASIC < ns-WWKL0 < ns-WKL0 < ns-ACA0.



ns-BASIC =(RCA0)
s + emb + e + fst + Σ0

1overspill

+ Σ1
2equiv + Σ0

0TP.

⇐ Ms !e M∗ (semi-regurar),

⇐Ss ⊆ Cod(Ms/M∗) = S∗ ! Ms

ns-WKL0 =ns-BASIC + st.

⇐Ss = Cod(Ms/M∗) = S∗ ! Ms

ns-ACA0 =ns-BASIC + st + Σ1
1TP.

⇐ (Ms, Ss) ≺Σ1
1
(M∗, S∗)

ns-WWKL0 =ns-BASIC + LMP.

⇐Ss ⊆r Cod(Ms/M∗) = S∗ ! Ms



NS-systems

Theorem 1. aa

1. ns-WKL0 ⊢ (WKL0)s + (WKL0)∗.
2. ns-WKL0 is a conservative extension of WKL0.

Theorem 2. aa

1. ns-ACA0 ⊢ (ACA0)s + (ACA0)∗.
2. ns-ACA0 is a conservative extension of ACA0.

Theorem 3 (Simpson-Y). aa

1. ns-WWKL0 ⊢ (WWKL0)s + (WWKL0)∗.
2. ns-WWKL0 is a conservative extension of WWKL0.



RM for non-standard analysis
Theorem 4. The following are equivalent over ns-BASIC.
1. ns-WKL0.
2. For any continuous function fs on [0, 1] in V s, there exists

a piecewise linear s-continuous continuous function f∗ on
[0, 1] in V ∗ such that st(f∗) = fs.

3. For any totally bounded complete separable metric space
⟨As, ds⟩ in V s, there exist A∗ ⊃ As and d∗ ⊃ ds in V ∗

such that
Â∗ =

⋃

xs∈Âs

mon(xs).

4. Non-standard Jordan curve theorem:
for any Jordan curve Js, there exist non-standard arcwise
connected disjoint open sets D∗

1 , D
∗
2 such that

∂D∗
1 = ∂D∗

2 = R∗2 \ D∗
1 ∪ D∗

2 and st(∂D∗
1) = Js.



Theorem 5. The following are equivalent over ns-BASIC.
1. ns-WWKL0.
2. L(st−1(As)) ≤ αs ⇔ µ(As) ≤ αs for any

As ⊆ [0, 1], where

L(st−1(As)) = inf{L(B∗) | st−1(As) ⊆ B∗ ⊆ Ω}.
3. If F ∗ is an s-bounded function on [0, 1], fs is a

pre-standard part of F ∗ and H∗ ∈ N∗ \ Ns, then fs is
integrable on [0, 1] and

∫ 1

0
fs(x)dx = st

⎛

⎝
∑

i≤H∗

F ∗(i/H∗)

H∗

⎞

⎠ .



Theorem 6. The following are provable in ns-ACA0.
1. Transfer principle for real numbers.
2. Transfer principle for continuous functions.
3. Non-standard version of Bolzano/Weierstraß theorem.
4. Non-standard version of Ascoli’s lemma.
5. Non-standard version of Reimann mapping theorem.

Remark that they are not equivalent to ns-ACA0 over ns-BASIC.
On the other hand, Sam Sanders did some RM for Π1-transfer
principle in a different framework.

Question 1. aa
Are they all equivalent to ns-ACA0 over ns-BASIC plus some

basic notion?

We can apply these results to standard Reverse Mathematics.



Back to standard RM
Corollary 7. The following is equivalent over RCA0.
1. WKL0.
2. JRMT: for any Jordan curve J , there exists a biholomorphism

h from ∆(0; 1) to D ⊆ C such that ∂D = J .

Proof 1 → 2. By the conservation result, we only need to show
ns-WKL0 ⊢(JRMT)s.
By the previous theorem, there exists a non-standard
biholomorphism h∗ from ∆(0; 1) to D∗ ⊆ C∗ such that
st(∂D∗) = Js.

By the Schwarz lemma, h∗′ is bouded on ∆(1 − 2−i) for any
i ∈ Ns. Thus, h∗ is s-continuous on ∆(1).
Then we can easily show that hs = st(h∗) is a desired
biholomorphic function in V s.
Hence ns-WKL0 ⊢(JRMT)s. ✷



NS-systems ⇒ RM

1. Prove “simple version” of the target theorem within

RCA0.

2. Use “non-standard approximation property” which is

equivalent to ns-WKL0, then we get a WKL0 version

of the target theorem.

3. Use “transfer principle” which is equivalent to

ns-ACA0, then we get the full version of the target

theorem within ACA0.



NS-systems ⇒ RM

RCA0 version:

The following are provable within RCA0.

• Every polynomial on [0, 1] has a maximum.

• For every polynomial f on ∆(1) ⊆ C, |f | has a

maximum on ∂∆(1).

• Jordan curve theorem for a piecewise linear Jordan

curve.

• Riemann mapping theorem for a polygonal region.



NS-systems ⇒ RM

Use “non-standard approximation property”:

The following are provable within ns-WKL0.

• Every continuous function on a Jordan region has a

maximum.

• For every holomorphic function f on a Jordan region

D, |f | has a maximum on ∂D.

• Jordan curve theorem.

• Riemann mapping theorem for a Jordan region.



NS-systems ⇒ RM

Use conservativity:

The following are provable within WKL0.

• Every continuous function on a Jordan region has a

maximum.

• For every holomorphic function f on a Jordan region

D, |f | has a maximum on ∂D.

• Jordan curve theorem.

• Riemann mapping theorem for a Jordan region.



NS-systems ⇒ RM

Use “transfer principle”:

The following are provable within ns-ACA0.

• Every continuous function on a compact separable

metric space has a maximum.

• For every holomorphic function f on a bounded closed
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NS-systems ⇒ RM

1. Prove “simple version” of the target theorem within

RCA0.

2. Use “non-standard approximation property” which is

equivalent to ns-WKL0, then we get a WKL0 version

of the target theorem.

3. Use “transfer principle” which is equivalent to

ns-ACA0, then we get the full version of the target

theorem within ACA0.

⇒ Given a simple version of a standard theorem in

RCA0, we can get a WWKL0 version, a WKL0 version

and an ACA0 version automatically.
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Differentiation theorem

In computable analysis, the following result is known.

Theorem (Demuth, 1975)
If f : [0, 1]→ R is a computable function with bounded variation
and z ∈ [0, 1] is Martin-Löf random, then f is differentiable at z.

By this result, one can conjecture the following.

Theorem (WWKL0)
For any continuous function f : [0, 1]→ R with bounded variation,
there exists z ∈ [0, 1] such that f is (pseudo-)differentiable at z.
In fact, f is differentiable almost everywhere.
((pseudo-)differentiable: the ratio of differences converges in the Cauchy
sense, but the value might not exist.)

This is true, but formalizing the original proof is hard.
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and z ∈ [0, 1] is Martin-Löf random, then f is differentiable at z.

By this result, one can conjecture the following.

Theorem (WWKL0)
For any continuous function f : [0, 1]→ R with bounded variation,
there exists z ∈ [0, 1] such that f is (pseudo-)differentiable at z.
In fact, f is differentiable almost everywhere.
((pseudo-)differentiable: the ratio of differences converges in the Cauchy
sense, but the value might not exist.)

This is true, but formalizing the original proof is hard.
Keita Yokoyama Nonstandard models and RM 38 / 46



Computability vs NS models –on Ramsey’s thm–
Nonstandard analysis and RM

Some recent ideas

Random preserving extension
RM over RCA∗0

Differentiation theorem

In computable analysis, the following result is known.

Theorem (Demuth, 1975)
If f : [0, 1]→ R is a computable function with bounded variation
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Differentiation theorem

We want to convince the following two results.

Theorem (Greenberg/Miller/Nies/Slaman)

Within WKL0, any continuous function f : [0, 1]→ R is a difference
of two monotone functions.

Theorem (Brattka/Miller/Nies)
Any computable monotone function f : [0, 1]→ R is differentiable
at any Martin-Löf random points.
This is formalizable within RCA0, thus, WWKL0 proves that any
computable monotone function f : [0, 1]→ R is differentiable
almost everywhere.
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Extension with randomness preservation

Lemma (Simpson/Y)

For any countable model (M,S) |= WWKL0, there exists S̄ ⊇ S
such that (M, S̄) |= WKL0 and the following holds:
(†) for any A ∈ S̄ there exists B ∈ S such that B is Martin-Löf

random relative to A.

Idea of the proof.
If f : [0, 1]→ R is a continuous function in (M,S) |= WWKL0, then,
f is a difference of two monotone functions f = g − h in (M, S̄).
Take z ∈ [0, 1] ∩ S such that z is ML-random relative to g ⊕ h, then
f is differentiable at z.
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Reverse mathematics over RCA∗0
(Over RCA∗0)

The following are equivalent to RCA0.
Every finitely generated vector space has a basis.
For every countable field K, every polynomial f(x) ∈ K [x] has
only finitely many roots in K.

The following are equivalent to WKL∗0.
Every countable ring has a prime ideal.
Σ0

1-determinacy in Cantor space.
The following is equivalent to WKL0.

Every countable Peano system is isomorphic to (N, 0.+ 1).
The following are equivalent to ACA0.

Every countable ring has a maximal ideal.
Ramsey’s theorem RT3

2 . ⇐ IΣ0
1 is needed!!
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Question from second-order categoricity of N

We want to characterize N by second-order categoricity within a
system as weak as possible.

Question (Simpson/Y)
Is N second-order characterizable within RCA∗0?
Precisely, we want a second-order statement ϕ such that

RCA∗0 proves N satisfies ϕ.

RCA∗0 proves the categoricity theorem for ϕ (CT(ϕ)), where,

CT(ϕ): if an (inner) structure A satisfies ϕ then A " N.

⇒No!!
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Categoricity requires IΣ0
1

Theorem (Kołodziejczyk/Y)
Let ϕ be a second-order statement such that

WKL∗0 proves N satisfies ϕ.
Then, over RCA∗0,

CT(ϕ) implies RCA0.

This theorem is an easy consequence of the following.

Theorem (Kołodziejczyk/Y)
The following are equivalent over RCA∗0.

1 ¬IΣ0
1.

2 There exists an (inner) structure A for arithmetic, i.e.,
A ⊆ N,+A ⊆ A × A , ·A ⊆ A × A , . . . , such that |A | < |N| and
(A , {X | X ⊆ A }) |= WKL∗0.
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(Key lemmas for the theorem)

Lemma

If (M,S) is a model of RCA∗0 + ¬Σ0
1-induction, then, there exists a

Σ0
1-definable cut I ⊆e M such that I is closed under exponentiation.

Lemma

If (M,S) is a model of RCA∗0 + ¬Σ0
1-induction, and I is a

Σ0
1-definable cut, then there exist A ∈ S and f ∈ S such that f is an

isomorphism (A , {X ∈ S | X ⊆ A }) " (I, {X ∩ I | X ∈ S}).

Theorem (Simpson/Smith)
If (M,S) is a model of RCA∗0 and I ⊆e M is a cut which is closed
under exponentiation, then (I, {X ∩ I | X ∈ S}) |= WKL∗0.
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Stephen G. Simpson and Rick L. Smith, Factorization of
polynomials and Σ0

1 induction, Annals of Pure and Applied
Logic 31 (1986), 289–306.
S. G. Simpson and Y, Reverse mathematics and Peano
categoricity, Annals of Pure and Applied Logic 164 (2012),
no. 3, 284–293.
Leszek Aleksander Kołodziejczyk and Y, Categorical
characterizations of the natural numbers require primitive
recursion, preprint.
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R. Shore called the filed of Reverse Mathematics
“the Playground of Logic”.

Let’s play in this playground with model theories of
arithmetic!!

Thank you!
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