Now Under Construction: Intuitionistic Reverse Analysis
Joan Rand Moschovakis, Emerita Professor of Mathematics at Occidental College, Los Angeles, California
Each variety of reverse mathematics attempts to determine a minimal axiomatic basis for proving a particular mathematical theorem. Classical reverse analysis asks which set existence axioms are needed to prove particular theorems of classical second-order number theory. Intuitionistic reverse analysis asks which intuitionistically accepted properties of numbers and functions suffice to prove particular theorems of intuitionistic analysis using intuitionistic logic; it may also consider the relative strength of classical principles which do not contradict intuitionistic analysis.
S. Simpson showed that many theorems of classical analysis are equivalent, over a weak system PRA of primitive recursive arithmetic, to one of the following set existence principles: recursive comprehension, arithmetical comprehension, weak Konig’s Lemma, arithmetical transfinite recursion, Π11 comprehension. Intermediate principles are studied also. Intuitionistic analysis depends on function existence principles: countable and dependent choice, fan and bar theorems, continuous choice.
The fan and bar theorems have important mathematical equivalents. W. Veldman, building on a proof by T. Coquand, recently showed that over intuitionistic two-sorted recursive arithmetic BIM the principle of open induction is strictly intermediate between the fan and bar theorems, and is equivalent to intuitionistic versions of a number of classical theorems. Intuitionistic logic separates classically equivalent versions of countable choice, and it matters how decidability is interpreted. R. Solovay recently showed that Markov’s Principle is surprisingly strong in the presence of the bar theorem. The picture gradually becomes clear.