Formalization of Mathematics and Dependent Type Theory
Thierry Coquand, Gothenburg University
The first part will be about representation of mathematics on a computer. Questions that arise there are naturally reminiscent of issues that arise when teaching formal proofs in a basic logic course, e.g. how to deal with free and bound variables, and instantiation rules. As discussed in a 1962 paper of Tarski, these issues are “clearly experienced both in teaching an elementary course in mathematical logic and in formalizing the syntax of predicate logic for some theoretical purposes.” I will present two quite different approaches to this problem: one inspired by Tarski’s paper (N. Megill, system Metamath) and one using dependent type theory (N.G. de Bruijn).
The second part will then try to explain how notations introduced by dependent type theory suggest new insights for old questions coming from Principia Mathematica (extensionality, reducibility axiom) through the notion of universe, introduced by Grothendieck for representing category theory in set theory, and introduced in dependent type theory by P. Martin-Löf.