# Potentialism in the philosophy and foundations of mathematics

## Øystein Linnebo, University of Oslo

Aristotle famously claimed that the only coherent form of infinity is potential, not actual. However many objects there are, it is possible for there to be yet more; but it is impossible for there in fact to be infinitely many objects. Although this view was superseded by Cantor’s transfinite set theory, even Cantor regarded the collection of all sets as “unfinished” or incapable of “being together”. In recent years, there has been a revival of interest in potentialist approaches to the philosophy and foundations of mathematics. The lecture provides a survey of such approaches, covering both technical results and associated philosophical views, as these emerge both in published work and in work in progress.